Exact Mass: 772.0768482
Exact Mass Matches: 772.0768482
Found 3 metabolites which its exact mass value is equals to given mass value 772.0768482
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Guanosine triphosphate adenosine
Guanosine triphosphate adenosine is a dinucleoside polyphosphate. Dinucleoside polyphosphates are an interesting group of signalling molecules that control numerous physiological functions. Diadenosine compounds, with a backbone of anything from two to seven phosphates, are known to occur naturally. Some of them have been isolated from cerebral nerve terminals and, acting via nucleoside (P1), nucleotide (P2), or dinucleotide receptors, can affect central nervous system function. Many of them have been isolated from human blood platelet secretory granules and are potentially involved in haemostatic mechanisms and peripheral control of vascular tone. Many visceral organs respond to the application of adenine dinucleotides and, although they act on receptors in the periphery that can be mainly defined as either P1 or P2, evidence is now accumulating for discrete dinucleotide receptors. In the periphery, adenine dinucleotides can be potent agonists, with diverse functions, causing contraction or relaxation of smooth muscle. Many P2X receptor proteins and P2Y receptors have been cloned and adenine dinucleotides have a variable pharmacological profile at these receptors and may be useful tools for characterising subtypes of P2X and P2Y receptors. Many extracellular roles of diadenosine polyphosphates are emerging as yet increasingly important, natural ligands for a plethora of structurally diverse mononucleotide and dinucleotide receptors. (PMID: 12772275, 7767329) [HMDB] Guanosine triphosphate adenosine is a dinucleoside polyphosphate. Dinucleoside polyphosphates are an interesting group of signalling molecules that control numerous physiological functions. Diadenosine compounds, with a backbone of anything from two to seven phosphates, are known to occur naturally. Some of them have been isolated from cerebral nerve terminals and, acting via nucleoside (P1), nucleotide (P2), or dinucleotide receptors, can affect central nervous system function. Many of them have been isolated from human blood platelet secretory granules and are potentially involved in haemostatic mechanisms and peripheral control of vascular tone. Many visceral organs respond to the application of adenine dinucleotides and, although they act on receptors in the periphery that can be mainly defined as either P1 or P2, evidence is now accumulating for discrete dinucleotide receptors. In the periphery, adenine dinucleotides can be potent agonists, with diverse functions, causing contraction or relaxation of smooth muscle. Many P2X receptor proteins and P2Y receptors have been cloned and adenine dinucleotides have a variable pharmacological profile at these receptors and may be useful tools for characterising subtypes of P2X and P2Y receptors. Many extracellular roles of diadenosine polyphosphates are emerging as yet increasingly important, natural ligands for a plethora of structurally diverse mononucleotide and dinucleotide receptors. (PMID: 12772275, 7767329).
(R)-3,3-bis[3,5-Bis(trifluoromethyl)phenyl]-1,1-binaphthalene-2,2-diyl hydrogen phosphate
C36H17F12O4P (772.0672795999999)