Exact Mass: 766.5621

Exact Mass Matches: 766.5621

Found 87 metabolites which its exact mass value is equals to given mass value 766.5621, within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error 0.0002 dalton.

SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-{[(2S,3R)-3-hydroxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5)) consists of a sphingosine backbone and a 5-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15)) consists of a sphingosine backbone and a 15-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) consists of a sphingosine backbone and a 18-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) consists of a sphingosine backbone and a 15-hydroxyleicosapentaenyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) consists of a sphingosine backbone and a 12-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-{[(2S,3R)-3-hydroxy-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S)) consists of a sphingosine backbone and a 14,15-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R)) consists of a sphingosine backbone and a 11,12-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:3(5Z,11Z,14Z)-O(8,9))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:3(5Z,11Z,14Z)-O(8,9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:3(5Z,11Z,14Z)-O(8,9)) consists of a sphingosine backbone and a 8,9--epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:3(8Z,11Z,14Z)-O(5,6))

(2-{[(2S,3R,4E)-3-hydroxy-2-(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanamido)octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:3(8Z,11Z,14Z)-O(5,6)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:3(8Z,11Z,14Z)-O(5,6)) consists of a sphingosine backbone and a 5,6-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20)) consists of a sphingosine backbone and a 20-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S)) consists of a sphingosine backbone and a 5-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S)) consists of a sphingosine backbone and a 19-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R)) consists of a sphingosine backbone and a 18-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17)) consists of a sphingosine backbone and a 17-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R)) consists of a sphingosine backbone and a 16-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S)) consists of a sphingosine backbone and a 15-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S)) consists of a sphingosine backbone and a 12-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R)) consists of a sphingosine backbone and a 11-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9)) consists of a sphingosine backbone and a 9-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5))

(2-{[(2S,3R,4E,14Z)-3-hydroxy-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienamido]octadeca-4,14-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5625)


SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyeicosatetrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:3(5Z,11Z,14Z)-O(8,9))

SM(d18:1/20:3(5Z,11Z,14Z)-O(8,9))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:3(8Z,11Z,14Z)-O(5,6))

SM(d18:1/20:3(8Z,11Z,14Z)-O(5,6))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S))

SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9))

SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9))

C43H79N2O7P (766.5625)


   

SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5))

SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C43H79N2O7P (766.5625)


   

SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15))

SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C43H79N2O7P (766.5625)


   

SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S))

SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R))

SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S))

SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S))

SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S))

C43H79N2O7P (766.5625)


   

SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R))

SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R))

C43H79N2O7P (766.5625)


   

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C43H79N2O7P (766.5625)


   

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C43H79N2O7P (766.5625)


   

SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C43H79N2O7P (766.5625)


   

SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5))

SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5))

C43H79N2O7P (766.5625)


   

PE-Cer 19:3;2O/22:2;O

PE-Cer 19:3;2O/22:2;O

C43H79N2O7P (766.5625)


   

PE-Cer 25:3;2O/16:2;O

PE-Cer 25:3;2O/16:2;O

C43H79N2O7P (766.5625)


   

PE-Cer 17:3;2O/24:2;O

PE-Cer 17:3;2O/24:2;O

C43H79N2O7P (766.5625)


   

PE-Cer 23:3;2O/18:2;O

PE-Cer 23:3;2O/18:2;O

C43H79N2O7P (766.5625)


   

PE-Cer 21:3;2O/20:2;O

PE-Cer 21:3;2O/20:2;O

C43H79N2O7P (766.5625)


   

PE-Cer 15:3;2O/26:2;O

PE-Cer 15:3;2O/26:2;O

C43H79N2O7P (766.5625)


   

[(8E,12E,16E)-3,4-dihydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-3,4-dihydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H79N2O7P (766.5625)


   

[(8E,12E)-3,4-dihydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-3,4-dihydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H79N2O7P (766.5625)


   

[(E)-3,4-dihydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3,4-dihydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H79N2O7P (766.5625)


   

[3,4-dihydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3,4-dihydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H79N2O7P (766.5625)


   

[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

[1-carboxy-3-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621)


   

SM(38:5)

SM(t18:1_20:4)

C43H79N2O7P (766.5625)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

CerPE 15:3;O2/26:2;O

CerPE 15:3;O2/26:2;O

C43H79N2O7P (766.5625)


   

phSM(38:5)

phSM(d18:1_20:4)

C43H79N2O7P (766.5625)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved