Exact Mass: 766.5535954

Exact Mass Matches: 766.5535954

Found 219 metabolites which its exact mass value is equals to given mass value 766.5535954, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-{[(2S,3R)-3-hydroxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5)) consists of a sphingosine backbone and a 5-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15)) consists of a sphingosine backbone and a 15-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) consists of a sphingosine backbone and a 18-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) consists of a sphingosine backbone and a 15-hydroxyleicosapentaenyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-{[(2S,3R)-3-hydroxy-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) consists of a sphingosine backbone and a 12-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-{[(2S,3R)-3-hydroxy-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenamido]octadecyl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S)) consists of a sphingosine backbone and a 14,15-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R)) consists of a sphingosine backbone and a 11,12-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:3(5Z,11Z,14Z)-O(8,9))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:3(5Z,11Z,14Z)-O(8,9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:3(5Z,11Z,14Z)-O(8,9)) consists of a sphingosine backbone and a 8,9--epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:3(8Z,11Z,14Z)-O(5,6))

(2-{[(2S,3R,4E)-3-hydroxy-2-(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanamido)octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:3(8Z,11Z,14Z)-O(5,6)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:3(8Z,11Z,14Z)-O(5,6)) consists of a sphingosine backbone and a 5,6-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20)) consists of a sphingosine backbone and a 20-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S)) consists of a sphingosine backbone and a 5-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S)) consists of a sphingosine backbone and a 19-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R)) consists of a sphingosine backbone and a 18-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17)) consists of a sphingosine backbone and a 17-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R)) consists of a sphingosine backbone and a 16-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S)) consists of a sphingosine backbone and a 15-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S)) consists of a sphingosine backbone and a 12-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R)) consists of a sphingosine backbone and a 11-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9)) consists of a sphingosine backbone and a 9-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5))

(2-{[(2S,3R,4E,14Z)-3-hydroxy-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienamido]octadeca-4,14-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C43H79N2O7P (766.5624594000001)


SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyeicosatetrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

PA(19:0/22:4(7Z,10Z,13Z,16Z))

1-nonadecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C44H79O8P (766.5512264)


   

PA(20:4(5Z,8Z,11Z,14Z)/21:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-heneicosanoyl-glycero-3-phosphate

C44H79O8P (766.5512264)


   

PA(21:0/20:4(5Z,8Z,11Z,14Z))

1-heneicosanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C44H79O8P (766.5512264)


   

PA(22:4(7Z,10Z,13Z,16Z)/19:0)

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-nonadecanoyl-glycero-3-phosphate

C44H79O8P (766.5512264)


   

PA 41:4

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-nonadecanoyl-glycero-3-phosphate

C44H79O8P (766.5512264)


   
   
   

SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S))

SM(d18:1/20:4(6E,8Z,11Z,14Z)-OH(5S))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9))

SM(d18:1/20:4(5Z,7E,11Z,14Z)-OH(9))

C43H79N2O7P (766.5624594000001)


   

SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5))

SM(d18:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C43H79N2O7P (766.5624594000001)


   

SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15))

SM(d18:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C43H79N2O7P (766.5624594000001)


   

SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

SM(d18:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S))

SM(d18:1/20:3(5Z,8Z,11Z)-O(14R,15S))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R))

SM(d18:1/20:3(5Z,8Z,14Z)-O(11S,12R))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(20))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(17))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R))

SM(d18:1/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S))

SM(d18:1/20:4(5Z,8Z,11Z,13E)-OH(15S))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S))

SM(d18:1/20:4(5Z,8Z,10E,14Z)-OH(12S))

C43H79N2O7P (766.5624594000001)


   

SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R))

SM(d18:1/20:4(5E,8Z,12Z,14Z)-OH(11R))

C43H79N2O7P (766.5624594000001)


   

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C43H79N2O7P (766.5624594000001)


   

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

SM(d18:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C43H79N2O7P (766.5624594000001)


   

SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

SM(d18:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C43H79N2O7P (766.5624594000001)


   

SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5))

SM(d18:2(4E,14Z)/20:3(6,8,11)-OH(5))

C43H79N2O7P (766.5624594000001)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate

C51H74O5 (766.5535954)


   

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

C51H74O5 (766.5535954)


   

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C51H74O5 (766.5535954)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-nonadec-9-enoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-nonadec-9-enoate

C44H78O10 (766.5594688)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] nonadecanoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] nonadecanoate

C44H78O10 (766.5594688)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C44H78O10 (766.5594688)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C44H78O10 (766.5594688)


   

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C44H78O10 (766.5594688)


   

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C44H78O10 (766.5594688)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C44H78O10 (766.5594688)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C44H78O10 (766.5594688)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C44H78O10 (766.5594688)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-octadec-9-enoate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-octadec-9-enoate

C44H78O10 (766.5594688)


   

[1-heptadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-heptadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C44H78O10 (766.5594688)


   

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C44H79O8P (766.5512264)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C44H79O8P (766.5512264)


   

[1-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C44H79O8P (766.5512264)


   

[1-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C44H79O8P (766.5512264)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] pentacosanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] pentacosanoate

C44H79O8P (766.5512264)


   

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C44H79O8P (766.5512264)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropyl] henicosanoate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropyl] henicosanoate

C44H79O8P (766.5512264)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C44H79O8P (766.5512264)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropyl] (Z)-henicos-11-enoate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropyl] (Z)-henicos-11-enoate

C44H79O8P (766.5512264)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] tricosanoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] tricosanoate

C44H79O8P (766.5512264)


   

(1-nonadecanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-nonadecanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C44H79O8P (766.5512264)


   

[(8E,12E,16E)-3,4-dihydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-3,4-dihydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H79N2O7P (766.5624594000001)


   

[(8E,12E)-3,4-dihydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-3,4-dihydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H79N2O7P (766.5624594000001)


   

[(E)-3,4-dihydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3,4-dihydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H79N2O7P (766.5624594000001)


   

[3,4-dihydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3,4-dihydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H79N2O7P (766.5624594000001)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] nonadecanoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] nonadecanoate

C44H78O10 (766.5594688)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C44H78O10 (766.5594688)


   

[(2R)-1-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] pentacosanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] pentacosanoate

C44H79O8P (766.5512264)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-pentacosa-11,14-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-pentacosa-11,14-dienoate

C44H79O8P (766.5512264)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] henicosanoate

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] henicosanoate

C44H79O8P (766.5512264)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C44H78O10 (766.5594688)


   

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C44H78O10 (766.5594688)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C44H78O10 (766.5594688)


   

[(2R)-1-nonadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-nonadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C44H79O8P (766.5512264)


   

[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C44H78O10 (766.5594688)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-pentacos-11-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-pentacos-11-enoate

C44H79O8P (766.5512264)


   

[(2R)-2-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C44H78O10 (766.5594688)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-4-enoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-4-enoate

C44H78O10 (766.5594688)


   
   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate

C44H78O10 (766.5594688)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

C44H79O8P (766.5512264)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate

C44H78O10 (766.5594688)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadec-17-enoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadec-17-enoate

C44H78O10 (766.5594688)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

C44H79O8P (766.5512264)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C44H79O8P (766.5512264)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C44H78O10 (766.5594688)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadec-17-enoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadec-17-enoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C44H78O10 (766.5594688)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C44H78O10 (766.5594688)


   

[(2R)-2-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C44H78O10 (766.5594688)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] tricosanoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] tricosanoate

C44H79O8P (766.5512264)


   

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C44H78O10 (766.5594688)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate

C44H78O10 (766.5594688)


   

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] henicosanoate

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] henicosanoate

C44H79O8P (766.5512264)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

C44H78O10 (766.5594688)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] tricosanoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] tricosanoate

C44H79O8P (766.5512264)


   
   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-6-enoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-6-enoate

C44H78O10 (766.5594688)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-13-enoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-13-enoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-2-nonadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-nonadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C44H79O8P (766.5512264)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-9-enoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-9-enoate

C44H78O10 (766.5594688)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-1-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-heptadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C44H78O10 (766.5594688)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-7-enoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-7-enoate

C44H78O10 (766.5594688)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate

C44H78O10 (766.5594688)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-nonadec-9-enoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-nonadec-9-enoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] tricosanoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] tricosanoate

C44H79O8P (766.5512264)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] tricosanoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] tricosanoate

C44H79O8P (766.5512264)


   

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C44H79O8P (766.5512264)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-11-enoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-11-enoate

C44H78O10 (766.5594688)


   

[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

[1-carboxy-3-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C47H76NO7+ (766.5621486)


   

MGDG(35:3)

MGDG(16:0_19:3)

C44H78O10 (766.5594688)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

SM(38:5)

SM(t18:1_20:4)

C43H79N2O7P (766.5624594000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(40:4)

PMe(20:2_20:2)

C44H79O8P (766.5512264)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

phSM(38:5)

phSM(d18:1_20:4)

C43H79N2O7P (766.5624594000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved