Exact Mass: 759.5413907999999

Exact Mass Matches: 759.5413907999999

Found 114 metabolites which its exact mass value is equals to given mass value 759.5413907999999, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PE(18:0/18:1(12Z)-O(9S,10R))

(2-aminoethoxy)[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C41H78NO9P (759.5413907999999)


PE(18:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(12Z)-O(9S,10R)/18:0)

(2-aminoethoxy)[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C41H78NO9P (759.5413907999999)


PE(18:1(12Z)-O(9S,10R)/18:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-O(9S,10R)/18:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:0/18:1(9Z)-O(12,13))

(2-aminoethoxy)[(2R)-3-(octadecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C41H78NO9P (759.5413907999999)


PE(18:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(9Z)-O(12,13)/18:0)

(2-aminoethoxy)[(2R)-2-(octadecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C41H78NO9P (759.5413907999999)


PE(18:1(9Z)-O(12,13)/18:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(9Z)-O(12,13)/18:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(P-18:1(11Z)/18:1(12Z)-2OH(9,10))

(2-aminoethoxy)[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(1E,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO9P (759.5413907999999)


PE(P-18:1(11Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(P-18:1(11Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 1Z,11Z-octadecadienyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(12Z)-2OH(9,10)/P-18:1(11Z))

(2-aminoethoxy)[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(1E,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO9P (759.5413907999999)


PE(18:1(12Z)-2OH(9,10)/P-18:1(11Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-2OH(9,10)/P-18:1(11Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 1Z,11Z-octadecadienyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(P-18:1(9Z)/18:1(12Z)-2OH(9,10))

(2-aminoethoxy)[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(1E,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO9P (759.5413907999999)


PE(P-18:1(9Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(P-18:1(9Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 1Z,9Z-octadecadienyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(12Z)-2OH(9,10)/P-18:1(9Z))

(2-aminoethoxy)[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(1E,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO9P (759.5413907999999)


PE(18:1(12Z)-2OH(9,10)/P-18:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-2OH(9,10)/P-18:1(9Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 1Z,9Z-octadecadienyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(15:0/18:1(12Z)-O(9S,10R))

trimethyl(2-{[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-(pentadecanoyloxy)propyl phosphono]oxy}ethyl)azanium

C41H78NO9P (759.5413907999999)


PC(15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(12Z)-O(9S,10R)/15:0)

trimethyl(2-{[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-(pentadecanoyloxy)propyl phosphono]oxy}ethyl)azanium

C41H78NO9P (759.5413907999999)


PC(18:1(12Z)-O(9S,10R)/15:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-O(9S,10R)/15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(15:0/18:1(9Z)-O(12,13))

trimethyl(2-{[(2R)-3-(pentadecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C41H78NO9P (759.5413907999999)


PC(15:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(9Z)-O(12,13)/15:0)

trimethyl(2-{[(2R)-2-(pentadecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C41H78NO9P (759.5413907999999)


PC(18:1(9Z)-O(12,13)/15:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)-O(12,13)/15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   
   

PS(O-18:0/17:2(9Z,12Z))

1-octadecyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C41H78NO9P (759.5413907999999)


   

PS(P-16:0/19:1(9Z))

1-(1Z-hexadecenyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoserine

C41H78NO9P (759.5413907999999)


   

PS(P-18:0/17:1(9Z))

1-(1Z-octadecenyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoserine

C41H78NO9P (759.5413907999999)


   

PS(P-20:0/15:1(9Z))

1-(1Z-eicosenyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoserine

C41H78NO9P (759.5413907999999)


   

PS O-35:2

1-(1Z-octadecenyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoserine

C41H78NO9P (759.5413907999999)


   
   
   
   
   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] octadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] octadecanoate

C41H78NO9P (759.5413907999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropan-2-yl] octadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropan-2-yl] octadecanoate

C41H78NO9P (759.5413907999999)


   

[(2R)-3-pentadecanoyloxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-pentadecanoyloxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO9P (759.5413907999999)


   

[(2R)-2-pentadecanoyloxy-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-pentadecanoyloxy-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO9P (759.5413907999999)


   

PE(P-18:1(9Z)/18:1(12Z)-2OH(9,10))

PE(P-18:1(9Z)/18:1(12Z)-2OH(9,10))

C41H78NO9P (759.5413907999999)


   

PE(18:1(12Z)-2OH(9,10)/P-18:1(9Z))

PE(18:1(12Z)-2OH(9,10)/P-18:1(9Z))

C41H78NO9P (759.5413907999999)


   

PE(P-18:1(11Z)/18:1(12Z)-2OH(9,10))

PE(P-18:1(11Z)/18:1(12Z)-2OH(9,10))

C41H78NO9P (759.5413907999999)


   

PE(18:1(12Z)-2OH(9,10)/P-18:1(11Z))

PE(18:1(12Z)-2OH(9,10)/P-18:1(11Z))

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-hexadecanoyloxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-hexadecanoyloxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[hydroxy-[2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-3-undecoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-3-undecoxypropoxy]phosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-heptadecoxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptadecoxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-[(Z)-hexadec-9-enoxy]-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-hexadec-9-enoxy]-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-nonadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-nonadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-pentadecoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-pentadecoxypropoxy]phosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-octadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-octadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-hexadecoxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-hexadecoxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[hydroxy-[3-[(13Z,16Z)-tetracosa-13,16-dienoxy]-2-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(13Z,16Z)-tetracosa-13,16-dienoxy]-2-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-tridecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-tridecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-amino-3-[[2-heptadecanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-heptadecanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H78NO9P (759.5413907999999)


   

2-[4-[10,13-dimethyl-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[10,13-dimethyl-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C45H77NO6S (759.5471302000001)


   

2-[4-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

2-[4-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

C48H73NO6 (759.5437597999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (9Z,11E)-13-hydroperoxyoctadeca-9,11-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (9Z,11E)-13-hydroperoxyoctadeca-9,11-dienoate

C41H78NO9P (759.5413907999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoate

C41H78NO9P (759.5413907999999)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[10-(3-hexyloxiran-2-yl)decanoyloxy]propyl] (Z)-octadec-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[10-(3-hexyloxiran-2-yl)decanoyloxy]propyl] (Z)-octadec-9-enoate

C41H78NO9P (759.5413907999999)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] octadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] octadecanoate

C41H78NO9P (759.5413907999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (9Z,11E)-13-hydroxyoctadeca-9,11-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (9Z,11E)-13-hydroxyoctadeca-9,11-dienoate

C41H78NO9P (759.5413907999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (E)-10-hydroxyoctadec-12-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (E)-10-hydroxyoctadec-12-enoate

C41H78NO9P (759.5413907999999)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]pentadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]pentadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyheptadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyheptadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]undec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]undec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxytridec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxytridec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]henicosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]henicosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C44H76N2O6P+ (759.5440705999999)


   

1-(1Z-hexadecenyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoserine

1-(1Z-hexadecenyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoserine

C41H78NO9P (759.5413907999999)


   

1-(1Z-octadecenyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoserine

1-(1Z-octadecenyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoserine

C41H78NO9P (759.5413907999999)


   

1-(1Z-eicosenyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoserine

1-(1Z-eicosenyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoserine

C41H78NO9P (759.5413907999999)