Exact Mass: 758.5825248

Exact Mass Matches: 758.5825248

Found 107 metabolites which its exact mass value is equals to given mass value 758.5825248, within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error 0.0002 dalton.

PA(16:0/24:1(15Z))

[(2R)-3-(hexadecanoyloxy)-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(16:0/24:1(15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/24:1(15Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:1(9Z)/24:0)

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-(tetracosanoyloxy)propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(16:1(9Z)/24:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/24:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:0/22:1(13Z))

[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(18:0/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/22:1(13Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/22:0)

[(2R)-2-(docosanoyloxy)-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(18:1(11Z)/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/22:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/22:0)

[(2R)-2-(docosanoyloxy)-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(18:1(9Z)/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/22:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/20:1(11Z))

[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-(icosanoyloxy)propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(20:0/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/20:1(11Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:1(11Z)/20:0)

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-(icosanoyloxy)propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(20:1(11Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/20:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:0/18:1(11Z))

[(2R)-3-(docosanoyloxy)-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(22:0/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/18:1(11Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:1(13Z)/18:0)

[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-(octadecanoyloxy)propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(22:1(13Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/18:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(24:0/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-(tetracosanoyloxy)propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(24:0/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(24:0/16:1(9Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(24:1(15Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(24:1(15Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(24:1(15Z)/16:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:0/18:1(9Z))

[(2R)-3-(docosanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C43H83O8P (758.5825248)


PA(22:0/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/18:1(9Z)), in particular, consists of one docosanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:0/22:1(11Z))

1-octadecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C43H83O8P (758.5825248)


   

PA(19:1(9Z)/21:0)

1-(9Z-nonadecenoyl)-2-heneicosanoyl-glycero-3-phosphate

C43H83O8P (758.5825248)


   

PA(20:1(11Z)/20:0)

1-(11Z-eicosenoyl)-2-eicosanoyl-glycero-3-phosphate

C43H83O8P (758.5825248)


   

PA(21:0/19:1(9Z))

1-heneicosanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C43H83O8P (758.5825248)


   

PA(22:1(11Z)/18:0)

1-(11Z-docosenoyl)-2-octadecanoyl-glycero-3-phosphate

C43H83O8P (758.5825248)


   

PA(22:0/18:1(9Z))

1-docosanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

C43H83O8P (758.5825248)


   

PA(20:0/20:1(11Z))

1-eicosanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C43H83O8P (758.5825248)


   

PA(18:1(9Z)/22:0)

1-(9Z-octadecenoyl)-2-docosanoyl-glycero-3-phosphate

C43H83O8P (758.5825248)


   

PA 40:1

1-heneicosanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C43H83O8P (758.5825248)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[2-[(Z)-icos-11-enoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(Z)-icos-11-enoyl]oxy-3-phosphonooxypropyl] icosanoate

C43H83O8P (758.5825248)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-hexacos-15-enoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-hexacos-15-enoate

C43H83O8P (758.5825248)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] tricosanoate

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] tricosanoate

C43H83O8P (758.5825248)


   

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

C43H83O8P (758.5825248)


   

[2-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropyl] henicosanoate

[2-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropyl] henicosanoate

C43H83O8P (758.5825248)


   

(1-nonadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-henicos-11-enoate

(1-nonadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-henicos-11-enoate

C43H83O8P (758.5825248)


   

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] hexacosanoate

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] hexacosanoate

C43H83O8P (758.5825248)


   

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] heptacosanoate

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] heptacosanoate

C43H83O8P (758.5825248)


   

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-tetracos-13-enoate

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-tetracos-13-enoate

C43H83O8P (758.5825248)


   

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] pentacosanoate

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] pentacosanoate

C43H83O8P (758.5825248)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] tetracosanoate

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] tetracosanoate

C43H83O8P (758.5825248)


   

[2-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate

[2-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-hexacos-5-enoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-hexacos-5-enoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-icos-11-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

[(2R)-1-[(E)-icos-11-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] tetracosanoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] tetracosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-icos-11-enoyl]oxy-3-phosphonooxypropyl] icosanoate

[(2R)-2-[(E)-icos-11-enoyl]oxy-3-phosphonooxypropyl] icosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] tricosanoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] tricosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] pentacosanoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] pentacosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-hexacos-5-enoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-hexacos-5-enoate

C43H83O8P (758.5825248)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] hexacosanoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] hexacosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] pentacosanoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] pentacosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] tetracosanoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] tetracosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] tetracosanoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] tetracosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] tetracosanoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] tetracosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

[(2R)-1-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

C43H83O8P (758.5825248)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] hexacosanoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] hexacosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] tricosanoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] tricosanoate

C43H83O8P (758.5825248)


   

[(2R)-2-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropyl] icosanoate

[(2R)-2-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropyl] icosanoate

C43H83O8P (758.5825248)


   

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

C43H83O8P (758.5825248)


   

1-(11Z-docosenoyl)-2-octadecanoyl-glycero-3-phosphate

1-(11Z-docosenoyl)-2-octadecanoyl-glycero-3-phosphate

C43H83O8P (758.5825248)


   

PEt(38:1)

PEt(20:0_18:1)

C43H83O8P (758.5825248)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved