Exact Mass: 756.5652226
Exact Mass Matches: 756.5652226
Found 238 metabolites which its exact mass value is equals to given mass value 756.5652226
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
PA(16:1(9Z)/24:1(15Z))
PA(16:1(9Z)/24:1(15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/24:1(15Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:0/22:2(13Z,16Z))
PA(18:0/22:2(13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/22:2(13Z,16Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:1(11Z)/22:1(13Z))
PA(18:1(11Z)/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/22:1(13Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:1(9Z)/22:1(13Z))
PA(18:1(9Z)/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/22:1(13Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:2(9Z,12Z)/22:0)
PA(18:2(9Z,12Z)/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/22:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:1(11Z)/20:1(11Z))
PA(20:1(11Z)/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/20:1(11Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:0/18:2(9Z,12Z))
PA(22:0/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/18:2(9Z,12Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:1(13Z)/18:1(11Z))
PA(22:1(13Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/18:1(11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:1(13Z)/18:1(9Z))
PA(22:1(13Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/18:1(9Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:2(13Z,16Z)/18:0)
PA(22:2(13Z,16Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:2(13Z,16Z)/18:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(24:1(15Z)/16:1(9Z))
PA(24:1(15Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(24:1(15Z)/16:1(9Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/20:2(11Z,14Z))
PA(20:0/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/20:2(11Z,14Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:2(11Z,14Z)/20:0)
PA(20:2(11Z,14Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/20:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
1-oleoyl-2-palmitoyl-3-[O-alpha-D-galactopyranosyl]glycerol|3-O-alpha-D-galactopyranosyl-1-O-oleoyl-2-O-palmitoyl-glycerol|BBGL-III
3-O-alpha-D-galactopyranosyl-2-O-oleoyl-1-O-palmitoyl-glycerol|BBGL-III
1-palmitoyl-2-oleoyl-3-alpha-D-galactosyl-sn-glycerol
1-(9Z-octadecenoyl)-2-hexadecanoyl-3-beta-D-galactosyl-sn-glycerol
A 1,2-diacyl-3-beta-D-galactosyl-sn-glycerol in which the 1- and 2-acyl groups are specified as oleoyl and palmitoyl respectively.
1-octadecanoyl-2-(7Z-hexadecenoyl)-3-O-beta-D-galactosyl-sn-glycerol
(2s)-1-(Alpha-D-Glucopyranosyloxy)-3-(Hexadecanoyloxy)propan-2-Yl (11z)-Octadec-11-Enoate
1-oleoyl-2-palmitoyl-3-alpha-D-galactosyl-sn-glycerol
2-oleoyl-1-palmitoyl-3-alpha-D-glucosyl-sn-glycerol
1-oleoyl-2-palmitoyl-3-alpha-D-glucosyl-sn-glycerol
1-O-alpha-D-galactosyl-2-O-oleoyl-3-O-palmitoyl-sn-glycerol
1-alpha-D-galactosyl-2-oleoyl-3-palmitoyl-sn-glycerol
1-cis-vaccenoyl-2-palmitoyl-3-alpha-D-galactosyl-sn-glycerol
[1-hexadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate
4-[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-hexacos-15-enoate
[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-docos-13-enoate
[2-[(Z)-heptadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate
[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-nonadec-9-enoate
[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] henicosanoate
[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-henicos-11-enoate
[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-tetracos-13-enoate
[2-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] icosanoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] nonadecanoate
[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-icos-11-enoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] tetracosanoate
(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (13Z,16Z)-docosa-13,16-dienoate
(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (15Z,18Z)-hexacosa-15,18-dienoate
[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] henicosanoate
(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (13Z,16Z)-tetracosa-13,16-dienoate
[2-[(Z)-icos-11-enoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate
[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-hexacos-15-enoate
[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-docos-13-enoate
[1-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-henicos-11-enoate
(1-nonadecanoyloxy-3-phosphonooxypropan-2-yl) (11Z,14Z)-henicosa-11,14-dienoate
[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-tetracos-13-enoate
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] tricosanoate
[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] icosanoate
[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] docosanoate
[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-docos-13-enoate
[(2S)-1-[(E)-hexadec-7-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-docos-13-enoate
[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate
[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-7-enoate
[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate
[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate
[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate
[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate
[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate
[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate
[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-9-enoate
[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] tricosanoate
[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadec-17-enoate
[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-6-enoate
[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] docosanoate
[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadec-17-enoate
[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-tetracos-15-enoate
[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (5E,9E)-hexacosa-5,9-dienoate
[(2R)-2-[(E)-icos-11-enoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate
[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate
[(2R)-2-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] docosanoate
[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] icosanoate
[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate
[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-icos-13-enoate
[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate
[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate
[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-hexacos-5-enoate
[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-13-enoate
[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] tricosanoate
[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-hexacos-5-enoate
[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] docosanoate
[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-tetracos-15-enoate
[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate
[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-icos-11-enoate
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate
[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] nonadecanoate
[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-icos-13-enoate
[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate
[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-4-enoate
[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate
[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2R)-2-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate
[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptadecanoate
[(2R)-1-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-icos-11-enoate
[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] docosanoate
[(2R)-1-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
[(2R)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate
[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] tetracosanoate
[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate
[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-11-enoate
1-(9Z,12Z-octadecadienoyl)-2-docosanoyl-glycero-3-phosphate
1-octadecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate
1-(13Z,16Z-docosadienoyl)-2-octadecanoyl-glycero-3-phosphate
[(2R)-1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-docos-13-enoate
1-palmitoyl-2-cis-vaccenoyl-3-alpha-D-glucosyl-sn-glycerol
An alpha-D-Glc-(1->3)-1,2-diacylglycerol in which the acyl groups at positions 1 and 2 are palmitoyl (hexadecanoyl) and cis-vaccenoyl [(11Z)-octadec-11-enoyl] respectively. Found in Streptococcus pneumoniae.
PEt(38:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(38:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
arisaema glyceride 3
{"Ingredient_id": "HBIN016750","Ingredient_name": "arisaema glyceride 3","Alias": "NA","Ingredient_formula": "C43H80O10","Ingredient_Smile": "CCCCCCCCCCCCCCCC(=O)OCC(COC1C(C(C(C(O1)CO)O)O)O)OC(=O)CCCCCCCC=CCCCCCCCC","Ingredient_weight": "757.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1690","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101985966","DrugBank_id": "NA"}