Exact Mass: 755.3880561999999

Exact Mass Matches: 755.3880561999999

Found 36 metabolites which its exact mass value is equals to given mass value 755.3880561999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(14:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2-aminoethoxy)[(2R)-3-[(9Z)-tetradec-9-enoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C39H66NO11P (755.4373256)


PE(14:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-tetradec-9-enoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C39H66NO11P (755.4373256)


PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:1(9Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   
   
   
   
   

(3r,3as,6ar)-Hexahydrofuro[2,3-B]furan-3-Yl {(2s,3r)-4-[({2-[(1-Cyclopentylpiperidin-4-Yl)amino]-1,3-Benzothiazol-6-Yl}sulfonyl)(2-Methylpropyl)amino]-3-Hydroxy-1-Phenylbutan-2-Yl}carbamate

(3r,3as,6ar)-Hexahydrofuro[2,3-B]furan-3-Yl {(2s,3r)-4-[({2-[(1-Cyclopentylpiperidin-4-Yl)amino]-1,3-Benzothiazol-6-Yl}sulfonyl)(2-Methylpropyl)amino]-3-Hydroxy-1-Phenylbutan-2-Yl}carbamate

C38H53N5O7S2 (755.3386227999999)


C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors COVID info from DrugBank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N-3-Ylmethylamino)ethoxy)-tetrahydrofuran-3-yloxy)-tetrahydro-2H-pyran-3,4-diol

N-3-Ylmethylamino)ethoxy)-tetrahydrofuran-3-yloxy)-tetrahydro-2H-pyran-3,4-diol

C31H61N7O14 (755.4276285999999)


   

2-[2-[[(1S)-1-carboxylato-5-[[(E)-dec-2-enoyl]-hydroxyamino]pentyl]amino]-2-oxoethyl]-4-[[(1S)-1-carboxylato-5-[hydroxy(octanoyl)amino]pentyl]amino]-2-hydroxy-4-oxobutanoate

2-[2-[[(1S)-1-carboxylato-5-[[(E)-dec-2-enoyl]-hydroxyamino]pentyl]amino]-2-oxoethyl]-4-[[(1S)-1-carboxylato-5-[hydroxy(octanoyl)amino]pentyl]amino]-2-hydroxy-4-oxobutanoate

C36H59N4O13-3 (755.4078424)


   

PE(14:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PE(14:1(9Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C39H66NO11P (755.4373256)


   

PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:1(9Z))

PE(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:1(9Z))

C39H66NO11P (755.4373256)


   
   

Ac-Cha-Arg-MeAla-Haic-NHCH(CH2OH)2

Ac-Cha-Arg-MeAla-Haic-NHCH(CH2OH)2

C37H57N9O8 (755.4329882000001)


   

N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytrideca-4,8-dien-2-yl]acetamide

N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytrideca-4,8-dien-2-yl]acetamide

C33H57NO18 (755.3575462000001)


   

N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]propanamide

N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]propanamide

C33H57NO18 (755.3575462000001)