Exact Mass: 750.5241

Exact Mass Matches: 750.5241

Found 280 metabolites which its exact mass value is equals to given mass value 750.5241, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PA(18:0/22:5(4Z,7Z,10Z,13Z,16Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(18:0/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of osbond acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:0/22:5(7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(18:0/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(18:1(11Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(18:1(9Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(18:3(6Z,9Z,12Z)/22:2(13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/22:2(13Z,16Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(18:3(9Z,12Z,15Z)/22:2(13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/22:2(13Z,16Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/22:1(13Z))

[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(18:4(6Z,9Z,12Z,15Z)/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/22:1(13Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-(icosanoyloxy)propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:0/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:1(11Z)/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:1(11Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:1(11Z)/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:1(11Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(5Z,8Z,11Z,14Z)/20:1(11Z))

[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:4(5Z,8Z,11Z,14Z)/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/20:1(11Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(8Z,11Z,14Z,17Z)/20:1(11Z))

[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:4(8Z,11Z,14Z,17Z)/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/20:1(11Z)), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:0)

[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-2-(icosanoyloxy)propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:1(13Z)/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(22:1(13Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:2(13Z,16Z)/18:3(6Z,9Z,12Z))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(22:2(13Z,16Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:2(13Z,16Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:2(13Z,16Z)/18:3(9Z,12Z,15Z))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(22:2(13Z,16Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:2(13Z,16Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:4(7Z,10Z,13Z,16Z)/18:1(11Z))

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(22:4(7Z,10Z,13Z,16Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/18:1(11Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:4(7Z,10Z,13Z,16Z)/18:1(9Z))

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(22:4(7Z,10Z,13Z,16Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/18:1(9Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:5(4Z,7Z,10Z,13Z,16Z)/18:0)

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-(octadecanoyloxy)propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(22:5(4Z,7Z,10Z,13Z,16Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(4Z,7Z,10Z,13Z,16Z)/18:0), in particular, consists of one chain of osbond acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:5(7Z,10Z,13Z,16Z,19Z)/18:0)

[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-(octadecanoyloxy)propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(22:5(7Z,10Z,13Z,16Z,19Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(7Z,10Z,13Z,16Z,19Z)/18:0), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:2(11Z,14Z)/20:3(5Z,8Z,11Z))

[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:2(11Z,14Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:2(11Z,14Z)/20:3(8Z,11Z,14Z))

[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:2(11Z,14Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(5Z,8Z,11Z)/20:2(11Z,14Z))

[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:3(5Z,8Z,11Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/20:2(11Z,14Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(8Z,11Z,14Z)/20:2(11Z,14Z))

[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H75O8P (750.5199)


PA(20:3(8Z,11Z,14Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/20:2(11Z,14Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

SM(d17:1/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenamido]heptadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:1/20:4(6E,8Z,11Z,14Z)+=O(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:1/20:4(6E,8Z,11Z,14Z)+=O(5)) consists of a sphingosine backbone and a 5-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:1/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenamido]heptadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:1/20:4(5Z,8Z,11Z,13E)+=O(15)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:1/20:4(5Z,8Z,11Z,13E)+=O(15)) consists of a sphingosine backbone and a 15-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenamido]heptadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) consists of a sphingosine backbone and a 18-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenamido]heptadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) consists of a sphingosine backbone and a 15-hydroxyleicosapentaenyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenamido]heptadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) consists of a sphingosine backbone and a 12-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenamido]heptadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) consists of a sphingosine backbone and a 14,15-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) consists of a sphingosine backbone and a 11,12-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9)) consists of a sphingosine backbone and a 8,9--epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanamido)heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6)) consists of a sphingosine backbone and a 5,6-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) consists of a sphingosine backbone and a 20-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) consists of a sphingosine backbone and a 5-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) consists of a sphingosine backbone and a 19-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) consists of a sphingosine backbone and a 18-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) consists of a sphingosine backbone and a 17-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) consists of a sphingosine backbone and a 16-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) consists of a sphingosine backbone and a 15-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) consists of a sphingosine backbone and a 12-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) consists of a sphingosine backbone and a 11-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d17:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenamido]heptadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C42H75N2O7P (750.5312)


SM(d17:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d17:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) consists of a sphingosine backbone and a 9-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

1-18:2-2-16:2-monogalactosyldiacylglycerol

1-18:2-2-16:2-monogalactosyldiacylglycerol

C43H74O10 (750.5282)


   

neomaclafungin E

neomaclafungin E

C43H74O10 (750.5282)


   

(2S)-2-O-(9E-hexadecenoyl)-3-O-(9Z,12Z,15Z-octadecatrienoyl)-beta-D-galactopyranoside

(2S)-2-O-(9E-hexadecenoyl)-3-O-(9Z,12Z,15Z-octadecatrienoyl)-beta-D-galactopyranoside

C43H74O10 (750.5282)


   

1-18:1-2-16:3-monogalactosyldiacylglycerol

1-18:1-2-16:3-monogalactosyldiacylglycerol

C43H74O10 (750.5282)


   

1-18:3-2-16:1-monogalactosyldiacylglycerol

1-18:3-2-16:1-monogalactosyldiacylglycerol

C43H74O10 (750.5282)


   

PA(18:1(9Z)/22:4(7Z,10Z,13Z,16Z))

1-(9Z-octadecenoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(18:3(6Z,9Z,12Z)/22:2(13Z,16Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(18:3(9Z,12Z,15Z)/22:2(13Z,16Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(18:4(6Z,9Z,12Z,15Z)/22:1(11Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(11Z-docosenoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(20:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-eicosanoyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(20:1(11Z)/20:4(5Z,8Z,11Z,14Z))

1-(11Z-eicosenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(20:2(11Z,14Z)/20:3(8Z,11Z,14Z))

1-(11Z,14Z-eicosadienoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(20:3(8Z,11Z,14Z)/20:2(11Z,14Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(20:4(5Z,8Z,11Z,14Z)/20:1(11Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:0)

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-eicosanoyl-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(22:1(11Z)/18:4(6Z,9Z,12Z,15Z))

1-(11Z-docosenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(22:2(13Z,16Z)/18:3(6Z,9Z,12Z))

1-(13Z,16Z-docosadienoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(22:2(13Z,16Z)/18:3(9Z,12Z,15Z))

1-(13Z,16Z-docosadienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

PA(22:4(7Z,10Z,13Z,16Z)/18:1(9Z))

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

MGDG 34:4

1-(9Z,12Z,15Z-octadecatrienoy)-2-(9E-hexadecenoyl)-3-O-beta-D-galactosyl-sn-glycerol

C43H74O10 (750.5282)


   

PA 40:5

1-(13Z,16Z-docosadienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C43H75O8P (750.5199)


   

(2S)-1-O-(7Z,10Z)-hexadecadienoyl-2-O-linoleoyl-3-O-beta-D-galactopyranosyl-sn-glycerol

(2S)-1-O-(7Z,10Z)-hexadecadienoyl-2-O-linoleoyl-3-O-beta-D-galactopyranosyl-sn-glycerol

C43H74O10 (750.5282)


A galactoglycerolipid that consists of 1,2-diacyl-sn-glycerol having (7Z,10Z)-hexadecadienoyl and linoleoyl as the acyl groups and a beta-D-galactopyranosyl residue attached at position 3. It has been found in Daphnia pulex and exhibits cytotoxic activity.

   

[(2S,3R,4S,6R)-2-[[(2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-2-ethyl-3,4,10-trihydroxy-13-[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy-3,5,6,8,10,12,14-heptamethyl-15-oxo-1-oxa-6-azoniacyclopentadec-11-yl]oxy]-3-hydroxy-6-methyloxan-4-yl]-dimethylazanium

[(2S,3R,4S,6R)-2-[[(2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-2-ethyl-3,4,10-trihydroxy-13-[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy-3,5,6,8,10,12,14-heptamethyl-15-oxo-1-oxa-6-azoniacyclopentadec-11-yl]oxy]-3-hydroxy-6-methyloxan-4-yl]-dimethylazanium

C38H74N2O12+2 (750.5241)


   

SM(d17:1/20:4(6E,8Z,11Z,14Z)+=O(5))

SM(d17:1/20:4(6E,8Z,11Z,14Z)+=O(5))

C42H75N2O7P (750.5312)


   

SM(d17:1/20:4(5Z,8Z,11Z,13E)+=O(15))

SM(d17:1/20:4(5Z,8Z,11Z,13E)+=O(15))

C42H75N2O7P (750.5312)


   

SM(d17:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

SM(d17:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C42H75N2O7P (750.5312)


   

SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C42H75N2O7P (750.5312)


   

SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

SM(d17:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C42H75N2O7P (750.5312)


   

SM(d17:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

SM(d17:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

SM(d17:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

SM(d17:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9))

SM(d17:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6))

SM(d17:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

SM(d17:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

SM(d17:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

SM(d17:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

SM(d17:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C42H75N2O7P (750.5312)


   

SM(d17:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

SM(d17:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C42H75N2O7P (750.5312)


   

1-Arachidoyl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

1-Arachidoyl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

C43H75O8P-2 (750.5199)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-octadec-9-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-octadec-9-enoate

C43H74O10 (750.5282)


   

NAGlySer 20:4/20:4

NAGlySer 20:4/20:4

C45H70N2O7 (750.5183)


   

NAGlySer 24:5/16:3

NAGlySer 24:5/16:3

C45H70N2O7 (750.5183)


   

NAGlySer 22:5/18:3

NAGlySer 22:5/18:3

C45H70N2O7 (750.5183)


   

NAGlySer 16:4/24:4

NAGlySer 16:4/24:4

C45H70N2O7 (750.5183)


   

NAGlySer 26:7/14:1

NAGlySer 26:7/14:1

C45H70N2O7 (750.5183)


   

NAGlySer 20:5/20:3

NAGlySer 20:5/20:3

C45H70N2O7 (750.5183)


   

NAGlySer 18:3/22:5

NAGlySer 18:3/22:5

C45H70N2O7 (750.5183)


   

NAGlySer 22:6/18:2

NAGlySer 22:6/18:2

C45H70N2O7 (750.5183)


   

NAGlySer 18:5/22:3

NAGlySer 18:5/22:3

C45H70N2O7 (750.5183)


   

NAGlySer 24:6/16:2

NAGlySer 24:6/16:2

C45H70N2O7 (750.5183)


   

NAGlySer 18:4/22:4

NAGlySer 18:4/22:4

C45H70N2O7 (750.5183)


   

PEtOH 16:0_22:5

PEtOH 16:0_22:5

C43H75O8P (750.5199)


   

PEtOH 14:1_24:4

PEtOH 14:1_24:4

C43H75O8P (750.5199)


   

PEtOH 22:1_16:4

PEtOH 22:1_16:4

C43H75O8P (750.5199)


   

PMeOH 15:1_24:4

PMeOH 15:1_24:4

C43H75O8P (750.5199)


   

PEtOH 18:1_20:4

PEtOH 18:1_20:4

C43H75O8P (750.5199)


   

PMeOH 19:0_20:5

PMeOH 19:0_20:5

C43H75O8P (750.5199)


   

PMeOH 17:2_22:3

PMeOH 17:2_22:3

C43H75O8P (750.5199)


   

PEtOH 16:1_22:4

PEtOH 16:1_22:4

C43H75O8P (750.5199)


   

PEtOH 20:1_18:4

PEtOH 20:1_18:4

C43H75O8P (750.5199)


   

PMeOH 19:2_20:3

PMeOH 19:2_20:3

C43H75O8P (750.5199)


   

PMeOH 13:1_26:4

PMeOH 13:1_26:4

C43H75O8P (750.5199)


   

PMeOH 19:1_20:4

PMeOH 19:1_20:4

C43H75O8P (750.5199)


   

PEtOH 16:2_22:3

PEtOH 16:2_22:3

C43H75O8P (750.5199)


   

PMeOH 17:1_22:4

PMeOH 17:1_22:4

C43H75O8P (750.5199)


   

PMeOH 21:2_18:3

PMeOH 21:2_18:3

C43H75O8P (750.5199)


   

PEtOH 18:2_20:3

PEtOH 18:2_20:3

C43H75O8P (750.5199)


   

PMeOH 21:0_18:5

PMeOH 21:0_18:5

C43H75O8P (750.5199)


   

PEtOH 20:0_18:5

PEtOH 20:0_18:5

C43H75O8P (750.5199)


   

PEtOH 20:2_18:3

PEtOH 20:2_18:3

C43H75O8P (750.5199)


   

PMeOH 17:0_22:5

PMeOH 17:0_22:5

C43H75O8P (750.5199)


   

PEtOH 18:0_20:5

PEtOH 18:0_20:5

C43H75O8P (750.5199)


   

PEtOH 22:2_16:3

PEtOH 22:2_16:3

C43H75O8P (750.5199)


   

PMeOH 21:1_18:4

PMeOH 21:1_18:4

C43H75O8P (750.5199)


   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C43H74O10 (750.5282)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

C43H74O10 (750.5282)


   

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C43H74O10 (750.5282)


   

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C43H74O10 (750.5282)


   

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C43H74O10 (750.5282)


   

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C43H74O10 (750.5282)


   

[1-hexadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-hexadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C43H74O10 (750.5282)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

C43H74O10 (750.5282)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C43H74O10 (750.5282)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C43H74O10 (750.5282)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate

C43H75O8P (750.5199)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C43H75O8P (750.5199)


   

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H75O8P (750.5199)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C43H75O8P (750.5199)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] icosanoate

C43H75O8P (750.5199)


   

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C43H75O8P (750.5199)


   

[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C43H75O8P (750.5199)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] docosanoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] docosanoate

C43H75O8P (750.5199)


   

[1-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C43H75O8P (750.5199)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-tetracos-13-enoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-tetracos-13-enoate

C43H75O8P (750.5199)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-docosa-13,16-dienoate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-docosa-13,16-dienoate

C43H75O8P (750.5199)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

C43H75O8P (750.5199)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

C43H75O8P (750.5199)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C43H74O10 (750.5282)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C43H74O10 (750.5282)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate

C43H75O8P (750.5199)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H74O10 (750.5282)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C43H74O10 (750.5282)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (18E,21E)-tetracosa-18,21-dienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (18E,21E)-tetracosa-18,21-dienoate

C43H75O8P (750.5199)


   

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C43H75O8P (750.5199)


   

[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C43H74O10 (750.5282)


   

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C43H75O8P (750.5199)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate

C43H75O8P (750.5199)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C43H75O8P (750.5199)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] icosanoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] icosanoate

C43H75O8P (750.5199)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C43H74O10 (750.5282)


   

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C43H74O10 (750.5282)


   

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C43H75O8P (750.5199)


   

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-tetracos-11-enoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-tetracos-11-enoate

C43H75O8P (750.5199)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C43H75O8P (750.5199)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

C43H74O10 (750.5282)


   

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C43H74O10 (750.5282)


   

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

C43H75O8P (750.5199)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-11-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-11-enoate

C43H74O10 (750.5282)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H74O10 (750.5282)


   

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C43H74O10 (750.5282)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C43H75O8P (750.5199)


   

[(2S)-1-[(E)-hexadec-7-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-1-[(E)-hexadec-7-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C43H74O10 (750.5282)


   

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate

C43H75O8P (750.5199)


   

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C43H74O10 (750.5282)


   

[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

C43H75O8P (750.5199)


   

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

C43H75O8P (750.5199)


   

[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

C43H75O8P (750.5199)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

C43H75O8P (750.5199)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C43H74O10 (750.5282)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C43H75O8P (750.5199)


   

[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C43H75O8P (750.5199)


   

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

C43H75O8P (750.5199)


   

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C43H74O10 (750.5282)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2S)-1-[(E)-hexadec-7-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-[(E)-hexadec-7-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C43H74O10 (750.5282)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C43H74O10 (750.5282)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C43H74O10 (750.5282)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate

C43H75O8P (750.5199)


   

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C43H74O10 (750.5282)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

C43H75O8P (750.5199)


   

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10E,12E)-octadeca-10,12-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10E,12E)-octadeca-10,12-dienoate

C43H74O10 (750.5282)


   

[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C43H74O10 (750.5282)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (15E,18E,21E)-tetracosa-15,18,21-trienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (15E,18E,21E)-tetracosa-15,18,21-trienoate

C43H75O8P (750.5199)


   

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C43H75O8P (750.5199)


   

[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-1-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C43H74O10 (750.5282)


   

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

C43H75O8P (750.5199)


   

[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C43H74O10 (750.5282)


   

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C43H74O10 (750.5282)


   

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C43H74O10 (750.5282)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C43H75O8P (750.5199)


   

[(2R)-1-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C43H75O8P (750.5199)


   

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C43H75O8P (750.5199)


   

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C43H74O10 (750.5282)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C43H74O10 (750.5282)


   

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H75O8P (750.5199)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] tetracosanoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] tetracosanoate

C43H75O8P (750.5199)


   

[1-carboxy-3-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

[1-carboxy-3-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C46H72NO7+ (750.5309)


   

2-[carboxy-[3-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium

C46H72NO7+ (750.5309)


   

1-(9Z-octadecenoyl)-2-(7Z,10Z,13Z-hexadecatrienoyl)-3-beta-D-galactosyl-sn-glycerol

1-(9Z-octadecenoyl)-2-(7Z,10Z,13Z-hexadecatrienoyl)-3-beta-D-galactosyl-sn-glycerol

C43H74O10 (750.5282)


A monogalactosyldiacylglycerol 34:4 in which the 1- and 2-acyl groups are specified as oleoyl and (7Z,10Z,13Z)-hexadecatrienoyl respectively.

   

1-icosanoyl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

1-icosanoyl-2-arachidonoyl-sn-glycero-3-phosphate(2-)

C43H75O8P (750.5199)


A 1-acyl-2-arachidonoyl-sn-glycerol 3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1-icosanoyl-2-arachidonoyl-sn-glycero-3-phosphate; major species at pH 7.3.

   

BisMePA(38:5)

BisMePA(18:0_20:5)

C43H75O8P (750.5199)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(38:5)

PEt(16:0_22:5)

C43H75O8P (750.5199)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG 10:0_24:4

MGDG 10:0_24:4

C43H74O10 (750.5282)


   

MGDG 12:0_22:4

MGDG 12:0_22:4

C43H74O10 (750.5282)


   

MGDG 14:0_20:4

MGDG 14:0_20:4

C43H74O10 (750.5282)


   

MGDG 14:1_20:3

MGDG 14:1_20:3

C43H74O10 (750.5282)


   

MGDG 16:0_18:4

MGDG 16:0_18:4

C43H74O10 (750.5282)


   

MGDG 16:1_18:3

MGDG 16:1_18:3

C43H74O10 (750.5282)


   

MGDG 17:2_17:2

MGDG 17:2_17:2

C43H74O10 (750.5282)


   

MGDG O-34:5;O

MGDG O-34:5;O

C43H74O10 (750.5282)


   
   

PA O-18:0/22:6;O

PA O-18:0/22:6;O

C43H75O8P (750.5199)


   
   

PA P-18:0/22:5;O

PA P-18:0/22:5;O

C43H75O8P (750.5199)


   

PA P-18:1/22:4;O

PA P-18:1/22:4;O

C43H75O8P (750.5199)


   

PA P-20:0/20:5;O

PA P-20:0/20:5;O

C43H75O8P (750.5199)


   

PA P-20:1/20:4;O

PA P-20:1/20:4;O

C43H75O8P (750.5199)


   
   
   
   
   
   
   
   
   
   
   
   

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C43H74O10 (750.5282)


   

(1s,5's,6s,6's,7r,8s,9r,11r,13s,14r,15r,22r,25s,27r,29r)-22,29-diethyl-7,9,13,15-tetrahydroxy-6'-[(2r)-2-hydroxypropyl]-11-methoxy-5',6,8,14-tetramethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-trien-3-one

(1s,5's,6s,6's,7r,8s,9r,11r,13s,14r,15r,22r,25s,27r,29r)-22,29-diethyl-7,9,13,15-tetrahydroxy-6'-[(2r)-2-hydroxypropyl]-11-methoxy-5',6,8,14-tetramethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-trien-3-one

C43H74O10 (750.5282)


   

(1r,3s,7r,8e,11r,12s)-12-{[(1s,3r,6s,7r,9e,11r)-10-formyl-3,14-dimethyl-6-[(2s)-6-methylhept-5-en-2-yl]-12-oxotricyclo[9.3.0.0³,⁷]tetradeca-9,13-dien-6-yl]oxy}-1,4-dimethyl-12-[(2s)-6-methylhept-5-en-2-yl]-6-oxotricyclo[9.3.0.0³,⁷]tetradeca-4,8-diene-8-carbaldehyde

(1r,3s,7r,8e,11r,12s)-12-{[(1s,3r,6s,7r,9e,11r)-10-formyl-3,14-dimethyl-6-[(2s)-6-methylhept-5-en-2-yl]-12-oxotricyclo[9.3.0.0³,⁷]tetradeca-9,13-dien-6-yl]oxy}-1,4-dimethyl-12-[(2s)-6-methylhept-5-en-2-yl]-6-oxotricyclo[9.3.0.0³,⁷]tetradeca-4,8-diene-8-carbaldehyde

C50H70O5 (750.5223)


   

(1r,3s,7r,11r,12s)-12-{[(1s,3r,6s,7r,11r)-10-formyl-3,14-dimethyl-6-[(2s)-6-methylhept-5-en-2-yl]-12-oxotricyclo[9.3.0.0³,⁷]tetradeca-9,13-dien-6-yl]oxy}-1,4-dimethyl-12-[(2s)-6-methylhept-5-en-2-yl]-6-oxotricyclo[9.3.0.0³,⁷]tetradeca-4,8-diene-8-carbaldehyde

(1r,3s,7r,11r,12s)-12-{[(1s,3r,6s,7r,11r)-10-formyl-3,14-dimethyl-6-[(2s)-6-methylhept-5-en-2-yl]-12-oxotricyclo[9.3.0.0³,⁷]tetradeca-9,13-dien-6-yl]oxy}-1,4-dimethyl-12-[(2s)-6-methylhept-5-en-2-yl]-6-oxotricyclo[9.3.0.0³,⁷]tetradeca-4,8-diene-8-carbaldehyde

C50H70O5 (750.5223)


   

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C43H74O10 (750.5282)