Exact Mass: 749.4713872

Exact Mass Matches: 749.4713872

Found 385 metabolites which its exact mass value is equals to given mass value 749.4713872, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-aminoethoxy)[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-(pentadecanoyloxy)propoxy]phosphinic acid

C42H72NO8P (749.4995)


PE(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

(2-{[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H72NO8P (749.4995)


PC(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z))

(2-{[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H72NO8P (749.4995)


PC(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0)

(2-aminoethoxy)[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-(pentadecanoyloxy)propoxy]phosphinic acid

C42H72NO8P (749.4995)


PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PS(15:0/18:0)

(2S)-2-amino-3-{[hydroxy((2R)-2-(octadecanoyloxy)-3-(pentadecanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C39H76NO10P (749.5207)


PS(15:0/18:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(15:0/18:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:0/15:0)

(2S)-2-amino-3-({hydroxy[(2R)-3-(octadecanoyloxy)-2-(pentadecanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C39H76NO10P (749.5207)


PS(18:0/15:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:0/15:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PE-NMe(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

{2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-(tetradecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z))

{2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of osbond acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z))

{2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

{3-[(9Z)-hexadec-9-enoyloxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))

[2-(methylamino)ethoxy]({2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy})phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z))

{2,3-bis[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z))

[2-(methylamino)ethoxy]({3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy})phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z))

[2-(methylamino)ethoxy]({2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy})phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))

{2,3-bis[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z))

[2-(methylamino)ethoxy]({3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy})phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z))

{2-[(9Z)-hexadec-9-enoyloxy]-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z))

{3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)), in particular, consists of one chain of osbond acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z))

{3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0)

{3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-(tetradecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H72NO8P (749.4995)


PE-NMe(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

(2-aminoethoxy)[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

(2-aminoethoxy)[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z))

(2-aminoethoxy)[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

(2-aminoethoxy)[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z))

(2-aminoethoxy)[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

(2-aminoethoxy)[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z))

(2-aminoethoxy)[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

(2-aminoethoxy)[(2R)-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z))

(2-aminoethoxy)[(2R)-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(16:0/18:1(12Z)-2OH(9,10))

(2-aminoethoxy)[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-(hexadecanoyloxy)propoxy]phosphinic acid

C39H76NO10P (749.5207)


PE(16:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(16:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(12Z)-2OH(9,10)/16:0)

(2-aminoethoxy)[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-(hexadecanoyloxy)propoxy]phosphinic acid

C39H76NO10P (749.5207)


PE(18:1(12Z)-2OH(9,10)/16:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-2OH(9,10)/16:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9))

(2-aminoethoxy)[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13))

(2-aminoethoxy)[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9))

(2-aminoethoxy)[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13))

(2-aminoethoxy)[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C41H68NO9P (749.4631)


PE(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   
   

neojerminalanine

neojerminalanine

C40H63NO12 (749.435)


   
   

Venturicidin A

Venturicidin A

C41H67NO11 (749.4714)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents > D014698 - Venturicidins

   

H-Ser-Ile-Phe-Thr-Leu-Val-Ala-OH

H-Ser-Ile-Phe-Thr-Leu-Val-Ala-OH

C36H59N7O10 (749.4323)


   
   

Phosphatidylethanolamine 15:0-22:6

Phosphatidylethanolamine 15:0-22:6

C42H72NO8P (749.4995)


   

2,3-dihydromicrocolin A

2,3-dihydromicrocolin A

C39H67N5O9 (749.4939)


   

PE 37:6

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoethanolamine

C42H72NO8P (749.4995)


Found in mouse muscle; TwoDicalId=711; MgfFile=160824_Muscle_EPA_Neg_07_never; MgfId=730

   

Lecithin

1-Eicosapentaenoyl-2-myristoleoyl-sn-glycero-3-phosphocholine

C42H72NO8P (749.4995)


   

PE(37:6)

1-Docosahexaenoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C42H72NO8P (749.4995)


   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/12:0)

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-dodecanoyl-glycero-3-phosphocholine

C42H72NO8P (749.4995)


   

PE(17:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(9Z-heptadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphoethanolamine

C42H72NO8P (749.4995)


   

PE(17:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z))

1-(9Z,12Z-heptadecadienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphoethanolamine

C42H72NO8P (749.4995)


   

PE(20:4(5Z,8Z,11Z,14Z)/17:2(9Z,12Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoethanolamine

C42H72NO8P (749.4995)


   

PE(20:5(5Z,8Z,11Z,14Z,17Z)/17:1(9Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C42H72NO8P (749.4995)


   

PS(12:0/21:0)

1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PS(14:0/19:0)

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PS(17:0/16:0)

1-heptadecanoyl-2-hexadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PS(18:0/15:0)

1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PS(21:0/12:0)

1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PS(20:0/13:0)

1-eicosanoyl-2-tridecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PS(19:0/14:0)

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PS(16:0/17:0)

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PS(15:0/18:0)

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PS(13:0/20:0)

1-tridecanoyl-2-eicosanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PC 34:6

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

C42H72NO8P (749.4995)


   

PS 33:0

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

D-lactosyl-1-1-N-octanoyl-L-threo-sphingosine

D-lactosyl-1-1-N-octanoyl-L-threo-sphingosine

C38H71NO13 (749.4925)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C42H72NO8P (749.4995)


   

PE(16:0/18:1(12Z)-2OH(9,10))

PE(16:0/18:1(12Z)-2OH(9,10))

C39H76NO10P (749.5207)


   

PE(18:1(12Z)-2OH(9,10)/16:0)

PE(18:1(12Z)-2OH(9,10)/16:0)

C39H76NO10P (749.5207)


   

PE(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PE(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C41H68NO9P (749.4631)


   

PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z))

PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z))

C41H68NO9P (749.4631)


   

PE(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PE(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C41H68NO9P (749.4631)


   

PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z))

PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z))

C41H68NO9P (749.4631)


   

PE(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PE(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C41H68NO9P (749.4631)


   

PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z))

PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z))

C41H68NO9P (749.4631)


   

PE(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PE(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C41H68NO9P (749.4631)


   

PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z))

PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z))

C41H68NO9P (749.4631)


   

PE(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PE(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C41H68NO9P (749.4631)


   

PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z))

PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z))

C41H68NO9P (749.4631)


   

PE(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9))

PE(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9))

C41H68NO9P (749.4631)


   

PE(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z))

PE(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z))

C41H68NO9P (749.4631)


   

PE(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13))

PE(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13))

C41H68NO9P (749.4631)


   

PE(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z))

PE(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z))

C41H68NO9P (749.4631)


   

PE(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9))

PE(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9))

C41H68NO9P (749.4631)


   

PE(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z))

PE(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z))

C41H68NO9P (749.4631)


   

PE(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13))

PE(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13))

C41H68NO9P (749.4631)


   

PE(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z))

PE(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z))

C41H68NO9P (749.4631)


   

1,2-di-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-3-phospho-N-methylethanolamine

1,2-di-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-3-phospho-N-methylethanolamine

C42H72NO8P (749.4995)


   

N-[(2S,3S,4R)-1-(alpha-D-galactopyranosyloxy)-3,4-dihydroxyoctadecan-2-yl]-8-[4-(trifluoromethyl)phenyl]octanamide

N-[(2S,3S,4R)-1-(alpha-D-galactopyranosyloxy)-3,4-dihydroxyoctadecan-2-yl]-8-[4-(trifluoromethyl)phenyl]octanamide

C39H66F3NO9 (749.4689)


   

[(2R)-3-[hydroxy-[2-(methylamino)ethoxy]phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[(2R)-3-[hydroxy-[2-(methylamino)ethoxy]phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C42H72NO8P (749.4995)


   
   
   
   
   
   
   
   
   
   
   
   
   

SHexCer 13:2;2O/18:1;O

SHexCer 13:2;2O/18:1;O

C37H67NO12S (749.4384)


   

SHexCer 19:2;2O/12:1;O

SHexCer 19:2;2O/12:1;O

C37H67NO12S (749.4384)


   

SHexCer 16:2;2O/15:1;O

SHexCer 16:2;2O/15:1;O

C37H67NO12S (749.4384)


   

SHexCer 18:3;2O/13:0;O

SHexCer 18:3;2O/13:0;O

C37H67NO12S (749.4384)


   

SHexCer 16:3;2O/15:0;O

SHexCer 16:3;2O/15:0;O

C37H67NO12S (749.4384)


   

SHexCer 17:3;2O/14:0;O

SHexCer 17:3;2O/14:0;O

C37H67NO12S (749.4384)


   

SHexCer 12:2;2O/19:1;O

SHexCer 12:2;2O/19:1;O

C37H67NO12S (749.4384)


   

SHexCer 11:1;2O/20:2;O

SHexCer 11:1;2O/20:2;O

C37H67NO12S (749.4384)


   

SHexCer 15:2;2O/16:1;O

SHexCer 15:2;2O/16:1;O

C37H67NO12S (749.4384)


   

SHexCer 18:2;2O/13:1;O

SHexCer 18:2;2O/13:1;O

C37H67NO12S (749.4384)


   

SHexCer 17:2;2O/14:1;O

SHexCer 17:2;2O/14:1;O

C37H67NO12S (749.4384)


   

SHexCer 14:3;2O/17:0;O

SHexCer 14:3;2O/17:0;O

C37H67NO12S (749.4384)


   

SHexCer 15:3;2O/16:0;O

SHexCer 15:3;2O/16:0;O

C37H67NO12S (749.4384)


   

SHexCer 15:1;2O/16:2;O

SHexCer 15:1;2O/16:2;O

C37H67NO12S (749.4384)


   

SHexCer 19:3;2O/12:0;O

SHexCer 19:3;2O/12:0;O

C37H67NO12S (749.4384)


   

SHexCer 13:1;2O/18:2;O

SHexCer 13:1;2O/18:2;O

C37H67NO12S (749.4384)


   

Lnape 24:6/N-13:0

Lnape 24:6/N-13:0

C42H72NO8P (749.4995)


   

Lnape 22:6/N-15:0

Lnape 22:6/N-15:0

C42H72NO8P (749.4995)


   

Lnaps 16:0/N-17:0

Lnaps 16:0/N-17:0

C39H76NO10P (749.5207)


   

Lnaps 18:0/N-15:0

Lnaps 18:0/N-15:0

C39H76NO10P (749.5207)


   

Lnaps 24:7/N-10:0

Lnaps 24:7/N-10:0

C40H64NO10P (749.4268)


   

Lnaps 16:3/N-18:4

Lnaps 16:3/N-18:4

C40H64NO10P (749.4268)


   

Lnaps 15:0/N-18:0

Lnaps 15:0/N-18:0

C39H76NO10P (749.5207)


   

Lnape 22:5/N-15:1

Lnape 22:5/N-15:1

C42H72NO8P (749.4995)


   

Lnape 24:5/N-13:1

Lnape 24:5/N-13:1

C42H72NO8P (749.4995)


   

Lnape 15:0/N-22:6

Lnape 15:0/N-22:6

C42H72NO8P (749.4995)


   

Lnaps 20:0/N-13:0

Lnaps 20:0/N-13:0

C39H76NO10P (749.5207)


   

Lnape 18:4/N-19:2

Lnape 18:4/N-19:2

C42H72NO8P (749.4995)


   

Lnaps 13:0/N-20:0

Lnaps 13:0/N-20:0

C39H76NO10P (749.5207)


   

Lnape 15:1/N-22:5

Lnape 15:1/N-22:5

C42H72NO8P (749.4995)


   

Lnape 17:1/N-20:5

Lnape 17:1/N-20:5

C42H72NO8P (749.4995)


   

Lnaps 23:0/N-10:0

Lnaps 23:0/N-10:0

C39H76NO10P (749.5207)


   

Lnaps 17:0/N-16:0

Lnaps 17:0/N-16:0

C39H76NO10P (749.5207)


   

Lnape 20:4/N-17:2

Lnape 20:4/N-17:2

C42H72NO8P (749.4995)


   

Lnaps 14:0/N-19:0

Lnaps 14:0/N-19:0

C39H76NO10P (749.5207)


   

Lnape 19:2/N-18:4

Lnape 19:2/N-18:4

C42H72NO8P (749.4995)


   

Lnape 26:6/N-11:0

Lnape 26:6/N-11:0

C42H72NO8P (749.4995)


   

Lnape 20:5/N-17:1

Lnape 20:5/N-17:1

C42H72NO8P (749.4995)


   

Lnape 13:0/N-24:6

Lnape 13:0/N-24:6

C42H72NO8P (749.4995)


   

Lnape 11:0/N-26:6

Lnape 11:0/N-26:6

C42H72NO8P (749.4995)


   

Lnaps 18:4/N-16:3

Lnaps 18:4/N-16:3

C40H64NO10P (749.4268)


   

Lnaps 11:0/N-22:0

Lnaps 11:0/N-22:0

C39H76NO10P (749.5207)


   

Lnape 13:1/N-24:5

Lnape 13:1/N-24:5

C42H72NO8P (749.4995)


   

Lnaps 12:0/N-21:0

Lnaps 12:0/N-21:0

C39H76NO10P (749.5207)


   

Lnaps 10:0/N-24:7

Lnaps 10:0/N-24:7

C40H64NO10P (749.4268)


   

Lnape 17:2/N-20:4

Lnape 17:2/N-20:4

C42H72NO8P (749.4995)


   

Lnaps 10:0/N-23:0

Lnaps 10:0/N-23:0

C39H76NO10P (749.5207)


   

Lnaps 22:0/N-11:0

Lnaps 22:0/N-11:0

C39H76NO10P (749.5207)


   

Lnaps 19:0/N-14:0

Lnaps 19:0/N-14:0

C39H76NO10P (749.5207)


   

Lnaps 21:0/N-12:0

Lnaps 21:0/N-12:0

C39H76NO10P (749.5207)


   

PI-Cer 15:1;2O/16:2;O

PI-Cer 15:1;2O/16:2;O

C37H68NO12P (749.4479)


   

PI-Cer 19:2;2O/12:1;O

PI-Cer 19:2;2O/12:1;O

C37H68NO12P (749.4479)


   

PI-Cer 16:2;2O/15:1;O

PI-Cer 16:2;2O/15:1;O

C37H68NO12P (749.4479)


   

PI-Cer 13:2;2O/18:1;O

PI-Cer 13:2;2O/18:1;O

C37H68NO12P (749.4479)


   

PI-Cer 17:3;2O/14:0;O

PI-Cer 17:3;2O/14:0;O

C37H68NO12P (749.4479)


   

PI-Cer 17:2;2O/14:1;O

PI-Cer 17:2;2O/14:1;O

C37H68NO12P (749.4479)


   

PI-Cer 15:3;2O/16:0;O

PI-Cer 15:3;2O/16:0;O

C37H68NO12P (749.4479)


   

PI-Cer 19:3;2O/12:0;O

PI-Cer 19:3;2O/12:0;O

C37H68NO12P (749.4479)


   

PI-Cer 14:3;2O/17:0;O

PI-Cer 14:3;2O/17:0;O

C37H68NO12P (749.4479)


   

PI-Cer 16:3;2O/15:0;O

PI-Cer 16:3;2O/15:0;O

C37H68NO12P (749.4479)


   

PI-Cer 18:2;2O/13:1;O

PI-Cer 18:2;2O/13:1;O

C37H68NO12P (749.4479)


   

PI-Cer 13:1;2O/18:2;O

PI-Cer 13:1;2O/18:2;O

C37H68NO12P (749.4479)


   

PI-Cer 15:2;2O/16:1;O

PI-Cer 15:2;2O/16:1;O

C37H68NO12P (749.4479)


   

PI-Cer 18:3;2O/13:0;O

PI-Cer 18:3;2O/13:0;O

C37H68NO12P (749.4479)


   

PI-Cer 12:2;2O/19:1;O

PI-Cer 12:2;2O/19:1;O

C37H68NO12P (749.4479)


   

2-amino-3-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H68NO9P (749.4631)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H68NO9P (749.4631)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H68NO9P (749.4631)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H68NO9P (749.4631)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C42H72NO8P (749.4995)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C42H72NO8P (749.4995)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C42H72NO8P (749.4995)


   
   
   

SHexCer 19:1;2O/13:1

SHexCer 19:1;2O/13:1

C38H71NO11S (749.4748)


   

SHexCer 20:1;2O/12:1

SHexCer 20:1;2O/12:1

C38H71NO11S (749.4748)


   

SHexCer 14:1;2O/18:1

SHexCer 14:1;2O/18:1

C38H71NO11S (749.4748)


   

SHexCer 18:1;2O/14:1

SHexCer 18:1;2O/14:1

C38H71NO11S (749.4748)


   

SHexCer 16:1;2O/16:1

SHexCer 16:1;2O/16:1

C38H71NO11S (749.4748)


   

SHexCer 16:0;2O/16:2

SHexCer 16:0;2O/16:2

C38H71NO11S (749.4748)


   

SHexCer 17:1;2O/15:1

SHexCer 17:1;2O/15:1

C38H71NO11S (749.4748)


   

2-Amino-3-[hydroxy-(3-octanoyloxy-2-pentacosanoyloxypropoxy)phosphoryl]oxypropanoic acid

2-Amino-3-[hydroxy-(3-octanoyloxy-2-pentacosanoyloxypropoxy)phosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

2-Amino-3-[(3-heptanoyloxy-2-hexacosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

2-Amino-3-[(3-heptanoyloxy-2-hexacosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

2-Amino-3-[hydroxy-(3-nonanoyloxy-2-tetracosanoyloxypropoxy)phosphoryl]oxypropanoic acid

2-Amino-3-[hydroxy-(3-nonanoyloxy-2-tetracosanoyloxypropoxy)phosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

C42H72NO8P (749.4995)


   

2-Amino-3-[hydroxy-(2-octadecanoyloxy-3-pentadecanoyloxypropoxy)phosphoryl]oxypropanoic acid

2-Amino-3-[hydroxy-(2-octadecanoyloxy-3-pentadecanoyloxypropoxy)phosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

2-Amino-3-[(3-dodecanoyloxy-2-henicosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

2-Amino-3-[(3-dodecanoyloxy-2-henicosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

2-Amino-3-[hydroxy-(2-nonadecanoyloxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropanoic acid

2-Amino-3-[hydroxy-(2-nonadecanoyloxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

2-Amino-3-[(2-heptadecanoyloxy-3-hexadecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

2-Amino-3-[(2-heptadecanoyloxy-3-hexadecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

2-Amino-3-[hydroxy-(2-icosanoyloxy-3-tridecanoyloxypropoxy)phosphoryl]oxypropanoic acid

2-Amino-3-[hydroxy-(2-icosanoyloxy-3-tridecanoyloxypropoxy)phosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

2-Amino-3-[(3-decanoyloxy-2-tricosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

2-Amino-3-[(3-decanoyloxy-2-tricosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

2-Amino-3-[(2-docosanoyloxy-3-undecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

2-Amino-3-[(2-docosanoyloxy-3-undecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H64NO10P (749.4268)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (Z)-nonadec-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (Z)-nonadec-9-enoate

C42H72NO8P (749.4995)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H72NO8P (749.4995)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

C42H72NO8P (749.4995)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

C42H72NO8P (749.4995)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C42H72NO8P (749.4995)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C42H72NO8P (749.4995)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H64NO10P (749.4268)


   

[3-decanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H64NO10P (749.4268)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

2-Amino-3-[(2-heptacosanoyloxy-3-hexanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

2-Amino-3-[(2-heptacosanoyloxy-3-hexanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexadecanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexadecanamide

C38H71NO13 (749.4925)


   

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundecan-2-yl]pentadec-9-enamide

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundecan-2-yl]pentadec-9-enamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptadec-4-en-2-yl]nonanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptadec-4-en-2-yl]nonanamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octadecanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octadecanamide

C38H71NO13 (749.4925)


   

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]tetradec-9-enamide

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]tetradec-9-enamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridec-4-en-2-yl]tridecanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridec-4-en-2-yl]tridecanamide

C38H71NO13 (749.4925)


   

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonan-2-yl]heptadec-9-enamide

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonan-2-yl]heptadec-9-enamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]undecanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]undecanamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracos-4-en-2-yl]acetamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracos-4-en-2-yl]acetamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]decanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]decanamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]butanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]butanamide

C38H71NO13 (749.4925)


   

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridecan-2-yl]tridec-9-enamide

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridecan-2-yl]tridec-9-enamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]pentadecanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]pentadecanamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]heptadecanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]heptadecanamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonadec-4-en-2-yl]heptanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonadec-4-en-2-yl]heptanamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicos-4-en-2-yl]hexanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicos-4-en-2-yl]hexanamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicos-4-en-2-yl]pentanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicos-4-en-2-yl]pentanamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricos-4-en-2-yl]propanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricos-4-en-2-yl]propanamide

C38H71NO13 (749.4925)


   

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]hexadec-9-enamide

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]hexadec-9-enamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]dodecanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]dodecanamide

C38H71NO13 (749.4925)


   

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]octadec-9-enamide

(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]octadec-9-enamide

C38H71NO13 (749.4925)


   

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]tetradecanamide

N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]tetradecanamide

C38H71NO13 (749.4925)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H72NO8P (749.4995)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C42H72NO8P (749.4995)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H72NO8P (749.4995)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (9E,11E,13E)-henicosa-9,11,13-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (9E,11E,13E)-henicosa-9,11,13-trienoate

C42H72NO8P (749.4995)


   

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

(2S)-2-amino-3-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H64NO10P (749.4268)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

(2S)-2-amino-3-[[(2S)-2-docosanoyloxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-docosanoyloxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-icosanoyloxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-icosanoyloxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C42H72NO8P (749.4995)


   

(2R)-2-amino-3-[[(2S)-2-dodecanoyloxy-3-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-2-dodecanoyloxy-3-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-icosanoyloxy-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-icosanoyloxy-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C42H72NO8P (749.4995)


   

(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H64NO10P (749.4268)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (9E,11E)-henicosa-9,11-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (9E,11E)-henicosa-9,11-dienoate

C42H72NO8P (749.4995)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C42H72NO8P (749.4995)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H72NO8P (749.4995)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

(2R)-2-amino-3-[[(2S)-3-docosanoyloxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-docosanoyloxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (E)-henicos-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (E)-henicos-9-enoate

C42H72NO8P (749.4995)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO8P (749.4995)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

C42H72NO8P (749.4995)


   

(2R)-2-amino-3-[[(2S)-2-decanoyloxy-3-tricosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-2-decanoyloxy-3-tricosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H72NO8P (749.4995)


   

(2S)-2-amino-3-[[(2S)-3-decanoyloxy-2-tricosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-decanoyloxy-2-tricosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H64NO10P (749.4268)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-nonadecanoyloxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-nonadecanoyloxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO10P (749.5207)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C42H72NO8P (749.4995)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C42H72NO8P (749.4995)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H72NO8P (749.4995)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H72NO8P (749.4995)


   

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H64NO10P (749.4268)


   

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphoserine

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphoserine

1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

PE(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PE(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C42H72NO8P (749.4995)


   

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphoserine

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphoserine

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

1-tridecanoyl-2-eicosanoyl-glycero-3-phosphoserine

1-tridecanoyl-2-eicosanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphoserine

1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

1-heptadecanoyl-2-hexadecanoyl-glycero-3-phosphoserine

1-heptadecanoyl-2-hexadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphoserine

1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

1-eicosanoyl-2-tridecanoyl-glycero-3-phosphoserine

1-eicosanoyl-2-tridecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphoserine

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphoserine

C39H76NO10P (749.5207)


   

1-O-(alpha-D-galactopyranosyl)-N-[8-(4-trifluoromethyl)phenyloctanoyl]phytosphingosine

1-O-(alpha-D-galactopyranosyl)-N-[8-(4-trifluoromethyl)phenyloctanoyl]phytosphingosine

C39H66F3NO9 (749.4689)


A glycophytoceramide having an alpha-D-galactopyranosyl residue at the O-1 position and an 8-[(4-trifluoromethyl)phenyl]octanoyl group attached to the nitrogen.

   

phosphatidylcholine 34:6

phosphatidylcholine 34:6

C42H72NO8P (749.4995)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 34 carbons in total with 6 double bonds.

   

MePC(33:6)

MePC(11:0_22:6)

C42H72NO8P (749.4995)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PE P-16:1/20:6;O2

PE P-16:1/20:6;O2

C41H68NO9P (749.4631)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PS O-20:0/11:3;O3

PS O-20:0/11:3;O3

C37H68NO12P (749.4479)


   

PS O-20:0/12:2;O2

PS O-20:0/12:2;O2

C38H72NO11P (749.4843)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Hex2Cer 14:1;O2/12:0

Hex2Cer 14:1;O2/12:0

C38H71NO13 (749.4925)


   

Hex2Cer 14:2;O2/11:0;O

Hex2Cer 14:2;O2/11:0;O

C37H67NO14 (749.4561)


   

Hex2Cer 15:1;O2/11:0

Hex2Cer 15:1;O2/11:0

C38H71NO13 (749.4925)


   

Hex2Cer 15:2;O2/10:0;O

Hex2Cer 15:2;O2/10:0;O

C37H67NO14 (749.4561)


   

Hex2Cer 16:1;O2/10:0

Hex2Cer 16:1;O2/10:0

C38H71NO13 (749.4925)


   

Hex2Cer 25:2;O2;O

Hex2Cer 25:2;O2;O

C37H67NO14 (749.4561)


   

Hex2Cer 26:1;O2

Hex2Cer 26:1;O2

C38H71NO13 (749.4925)


   

LacCer 14:1;O2/12:0

LacCer 14:1;O2/12:0

C38H71NO13 (749.4925)


   

LacCer 14:2;O2/11:0;O

LacCer 14:2;O2/11:0;O

C37H67NO14 (749.4561)


   

LacCer 15:1;O2/11:0

LacCer 15:1;O2/11:0

C38H71NO13 (749.4925)


   

LacCer 15:2;O2/10:0;O

LacCer 15:2;O2/10:0;O

C37H67NO14 (749.4561)


   

LacCer 16:1;O2/10:0

LacCer 16:1;O2/10:0

C38H71NO13 (749.4925)


   

LacCer 25:2;O2;O

LacCer 25:2;O2;O

C37H67NO14 (749.4561)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

n-[(2s,3r,4s,6r)-2-{[(3r,4s,5s,6r,7r,9r,11r,12r,13s,14r)-14-ethyl-7,12,13-trihydroxy-4-{[(2r,4r,5s,6s)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy}-3,5,7,9,11,13-hexamethyl-2,10-dioxo-1-oxacyclotetradecan-6-yl]oxy}-3-hydroxy-6-methyloxan-4-yl]-n-methylmethanamine oxide

n-[(2s,3r,4s,6r)-2-{[(3r,4s,5s,6r,7r,9r,11r,12r,13s,14r)-14-ethyl-7,12,13-trihydroxy-4-{[(2r,4r,5s,6s)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy}-3,5,7,9,11,13-hexamethyl-2,10-dioxo-1-oxacyclotetradecan-6-yl]oxy}-3-hydroxy-6-methyloxan-4-yl]-n-methylmethanamine oxide

C37H67NO14 (749.4561)


   

(1s,2s,6s,9s,10s,11r,12r,13s,14s,15s,16r,18s,19r,20s,22s,23s,25r)-20-(acetyloxy)-10,12,14,16,23-pentahydroxy-6,10,19-trimethyl-13-{[(2r)-2-methylbutanoyl]oxy}-24-oxa-4-azaheptacyclo[12.12.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁵.0¹⁸,²³.0¹⁹,²⁵]hexacosan-22-yl 2,2-dimethylbutanoate

(1s,2s,6s,9s,10s,11r,12r,13s,14s,15s,16r,18s,19r,20s,22s,23s,25r)-20-(acetyloxy)-10,12,14,16,23-pentahydroxy-6,10,19-trimethyl-13-{[(2r)-2-methylbutanoyl]oxy}-24-oxa-4-azaheptacyclo[12.12.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁵.0¹⁸,²³.0¹⁹,²⁵]hexacosan-22-yl 2,2-dimethylbutanoate

C40H63NO12 (749.435)


   

{[(2r,3r,4r,6r)-3-hydroxy-6-{[(1r,5s,6r,8r,9e,11r,15e,17r)-1-hydroxy-5-[(2r,4r,5s,6s)-5-hydroxy-4,6-dimethyl-7-oxononan-2-yl]-6,8,16,18-tetramethyl-3-oxo-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-11-yl]oxy}-2-methyloxan-4-yl]oxy}methanimidic acid

{[(2r,3r,4r,6r)-3-hydroxy-6-{[(1r,5s,6r,8r,9e,11r,15e,17r)-1-hydroxy-5-[(2r,4r,5s,6s)-5-hydroxy-4,6-dimethyl-7-oxononan-2-yl]-6,8,16,18-tetramethyl-3-oxo-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-11-yl]oxy}-2-methyloxan-4-yl]oxy}methanimidic acid

C41H67NO11 (749.4714)


   

4-(1,21-dihydroxy-2-methyl-11-oxo-22-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docosylidene)-5-hydroxy-2-[(4-hydroxyphenyl)methyl]-2h-pyrrol-3-one

4-(1,21-dihydroxy-2-methyl-11-oxo-22-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docosylidene)-5-hydroxy-2-[(4-hydroxyphenyl)methyl]-2h-pyrrol-3-one

C40H63NO12 (749.435)


   

2-{[2-({2-[(2-{[2-({2-[(2-amino-1,3-dihydroxypropylidene)amino]-1-hydroxy-3-methylpentylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-1,3-dihydroxybutylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-1-hydroxy-3-methylbutylidene]amino}propanoic acid

2-{[2-({2-[(2-{[2-({2-[(2-amino-1,3-dihydroxypropylidene)amino]-1-hydroxy-3-methylpentylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-1,3-dihydroxybutylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-1-hydroxy-3-methylbutylidene]amino}propanoic acid

C36H59N7O10 (749.4323)


   

1-{2,4-dihydroxy-5-[(4-hydroxyphenyl)methyl]-5h-pyrrol-3-yl}-21-hydroxy-2-methyl-22-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docosane-1,11-dione

1-{2,4-dihydroxy-5-[(4-hydroxyphenyl)methyl]-5h-pyrrol-3-yl}-21-hydroxy-2-methyl-22-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docosane-1,11-dione

C40H63NO12 (749.435)


   

(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s,3r)-2-{[(2s)-2-{[(2s,3s)-2-{[(2s)-2-amino-1,3-dihydroxypropylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-1,3-dihydroxybutylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-methylbutylidene]amino}propanoic acid

(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s,3r)-2-{[(2s)-2-{[(2s,3s)-2-{[(2s)-2-amino-1,3-dihydroxypropylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-1,3-dihydroxybutylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-methylbutylidene]amino}propanoic acid

C36H59N7O10 (749.4323)


   

{[(2r,3r,4r,6s)-3-hydroxy-6-{[(1r,5s,6r,8r,9z,11r,15z,17r)-1-hydroxy-5-[(4r,5s,6s)-5-hydroxy-4,6-dimethyl-7-oxononan-2-yl]-6,8,16,18-tetramethyl-3-oxo-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-11-yl]oxy}-2-methyloxan-4-yl]oxy}methanimidic acid

{[(2r,3r,4r,6s)-3-hydroxy-6-{[(1r,5s,6r,8r,9z,11r,15z,17r)-1-hydroxy-5-[(4r,5s,6s)-5-hydroxy-4,6-dimethyl-7-oxononan-2-yl]-6,8,16,18-tetramethyl-3-oxo-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-11-yl]oxy}-2-methyloxan-4-yl]oxy}methanimidic acid

C41H67NO11 (749.4714)


   

(2s,21s)-1-[(5r)-2,4-dihydroxy-5-[(4-hydroxyphenyl)methyl]-5h-pyrrol-3-yl]-21-hydroxy-2-methyl-22-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docosane-1,11-dione

(2s,21s)-1-[(5r)-2,4-dihydroxy-5-[(4-hydroxyphenyl)methyl]-5h-pyrrol-3-yl]-21-hydroxy-2-methyl-22-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docosane-1,11-dione

C40H63NO12 (749.435)


   

4-(1,21-dihydroxy-2-methyl-11-oxo-22-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docosylidene)-5-hydroxy-2-[(4-hydroxyphenyl)methyl]-2h-pyrrol-3-one

4-(1,21-dihydroxy-2-methyl-11-oxo-22-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}docosylidene)-5-hydroxy-2-[(4-hydroxyphenyl)methyl]-2h-pyrrol-3-one

C40H63NO12 (749.435)


   

20-(acetyloxy)-10,12,14,16,23-pentahydroxy-6,10,19-trimethyl-13-[(2-methylbutanoyl)oxy]-24-oxa-4-azaheptacyclo[12.12.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁵.0¹⁸,²³.0¹⁹,²⁵]hexacosan-22-yl 2,2-dimethylbutanoate

20-(acetyloxy)-10,12,14,16,23-pentahydroxy-6,10,19-trimethyl-13-[(2-methylbutanoyl)oxy]-24-oxa-4-azaheptacyclo[12.12.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁵.0¹⁸,²³.0¹⁹,²⁵]hexacosan-22-yl 2,2-dimethylbutanoate

C40H63NO12 (749.435)