Exact Mass: 734.4999

Exact Mass Matches: 734.4999

Found 159 metabolites which its exact mass value is equals to given mass value 734.4999, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Erythromycylamine

10-amino-6-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-14-ethyl-7,12,13-trihydroxy-4-[(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy]-3,5,7,9,11,13-hexamethyl-1-oxacyclotetradecan-2-one

C37H70N2O12 (734.4929)


   

PA(18:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C39H75O10P (734.5098)


PA(18:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/18:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C39H75O10P (734.5098)


PA(18:1(12Z)-2OH(9,10)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/18:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C39H75O10P (734.5098)


PA(i-18:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/i-18:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C39H75O10P (734.5098)


PA(18:1(12Z)-2OH(9,10)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/i-18:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4999)


SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) consists of a sphingosine backbone and a 5-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4999)


SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) consists of a sphingosine backbone and a 15-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4999)


SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) consists of a sphingosine backbone and a 18-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4999)


SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) consists of a sphingosine backbone and a 15-hydroxyleicosapentaenyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4999)


SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) consists of a sphingosine backbone and a 12-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4999)


SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

Sarcohydroquinone sulfate C

Sarcohydroquinone sulfate C

C46H70O5S (734.4944)


   

Lupeol-3-O-??-D-xylopyranosyl(1鈥樏傗垎4)-O-??-D-glucopyranoside

Lupeol-3-O-??-D-xylopyranosyl(1鈥樏傗垎4)-O-??-D-glucopyranoside

C42H70O10 (734.4969)


   
   

olean-12-en-3-O-beta-D-galactopyranosyl(1->4)-O-alpha-L-rhamnopyranoside

olean-12-en-3-O-beta-D-galactopyranosyl(1->4)-O-alpha-L-rhamnopyranoside

C42H70O10 (734.4969)


   

alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranosyl-(1->3)-alpha-amyrin

alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranosyl-(1->3)-alpha-amyrin

C42H70O10 (734.4969)


   

PG 17:0-16:1-d5

PG 17:0-16:1-d5

C39H75O10P (734.5098)


   

PG(13:0/20:1(11Z))

1-tridecanoyl-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(14:0/19:1(9Z))

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(14:1(9Z)/19:0)

1-(9Z-tetradecenoyl)-2-nonadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(15:0/18:1(9Z))

1-pentadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(15:1(9Z)/18:0)

1-(9Z-pentadecenoyl)-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(16:1(9Z)/17:0)

1-(9Z-hexadecenoyl)-2-heptadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(17:0/16:1(9Z))

1-heptadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(17:1(9Z)/16:0)

1-(9Z-heptadecenoyl)-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(18:0/15:1(9Z))

1-octadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(18:1(9Z)/15:0)

1-(9Z-octadecenoyl)-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(19:0/14:1(9Z))

1-nonadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(19:1(9Z)/14:0)

1-(9Z-nonadecenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(20:1(11Z)/13:0)

1-(11Z-eicosenoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG(16:0/17:1(9Z))

1-hexadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

PG 33:1

1-hexadecanoyl-2-(9R, 11S-methylene-hexadecanoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

(2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-13-[(2R,4R,5S,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-11-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-2-ethyl-3,4,10-trihydroxy-3,5,6,8,10,12,14-heptamethyl-1-oxa-6-azacyclopentadecan-15-one

(2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-13-[(2R,4R,5S,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-11-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-2-ethyl-3,4,10-trihydroxy-3,5,6,8,10,12,14-heptamethyl-1-oxa-6-azacyclopentadecan-15-one

C37H70N2O12 (734.4929)


   

9(S)-Erythromycylamine

(9S)-9-Amino-9-deoxoerythromycin

C37H70N2O12 (734.4929)


   
   

N-Desmethyl Azithromycin

N-Desmethyl Azithromycin

C37H70N2O12 (734.4929)


   

[(2R)-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[8-[(1S,2R)-2-hexylcyclopropyl]octanoyloxy]propyl] hexadecanoate

[(2R)-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[8-[(1S,2R)-2-hexylcyclopropyl]octanoyloxy]propyl] hexadecanoate

C39H75O10P (734.5098)


   

1,2-Dihexadecanoyl-sn-glycero-3-phospho-l-serine

1,2-Dihexadecanoyl-sn-glycero-3-phospho-l-serine

C38H73NO10P- (734.4972)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] hexadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] hexadecanoate

C39H75O10P (734.5098)


   

PA(18:0/18:1(12Z)-2OH(9,10))

PA(18:0/18:1(12Z)-2OH(9,10))

C39H75O10P (734.5098)


   

PA(18:1(12Z)-2OH(9,10)/18:0)

PA(18:1(12Z)-2OH(9,10)/18:0)

C39H75O10P (734.5098)


   

PA(i-18:0/18:1(12Z)-2OH(9,10))

PA(i-18:0/18:1(12Z)-2OH(9,10))

C39H75O10P (734.5098)


   

PA(18:1(12Z)-2OH(9,10)/i-18:0)

PA(18:1(12Z)-2OH(9,10)/i-18:0)

C39H75O10P (734.5098)


   

SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C41H71N2O7P (734.4999)


   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

C41H71N2O7P (734.4999)


   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C41H71N2O7P (734.4999)


   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C41H71N2O7P (734.4999)


   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C41H71N2O7P (734.4999)


   

SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C41H71N2O7P (734.4999)


   

[(2R)-1,1,2,3,3-Pentadeuterio-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[(2R)-1,1,2,3,3-Pentadeuterio-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C39H75O10P (734.5098)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-16,16,17,17,18,18,18-heptadeuteriooctadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-16,16,17,17,18,18,18-heptadeuteriooctadec-9-enoate

C39H75O10P (734.5098)


   

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C42H70O10 (734.4969)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C42H70O10 (734.4969)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-heptadec-9-enoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-heptadec-9-enoate

C42H70O10 (734.4969)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H70O10 (734.4969)


   

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C42H70O10 (734.4969)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C42H70O10 (734.4969)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

C42H70O10 (734.4969)


   

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate

C39H75O10P (734.5098)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C39H75O10P (734.5098)


   

[1-[(2-hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[(2-hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

C39H75O10P (734.5098)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

C39H75O10P (734.5098)


   

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

C39H75O10P (734.5098)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C39H75O10P (734.5098)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

C39H75O10P (734.5098)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C39H75O10P (734.5098)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] octadecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] octadecanoate

C39H75O10P (734.5098)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] icosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] icosanoate

C39H75O10P (734.5098)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] nonadecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] nonadecanoate

C39H75O10P (734.5098)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C39H75O10P (734.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

C39H75O10P (734.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

C39H75O10P (734.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

C39H75O10P (734.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-icos-11-enoate

C39H75O10P (734.5098)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] icosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] icosanoate

C39H75O10P (734.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C39H75O10P (734.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-docos-13-enoate

C39H75O10P (734.5098)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C39H75O10P (734.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

C39H75O10P (734.5098)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C39H75O10P (734.5098)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] nonadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] nonadecanoate

C39H75O10P (734.5098)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] octadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] octadecanoate

C39H75O10P (734.5098)


   

[(8E,12E,16E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H71N2O7P (734.4999)


   

[(8E,12E)-3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H71N2O7P (734.4999)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-11-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-11-enoate

C39H75O10P (734.5098)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-9-enoate

C39H75O10P (734.5098)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-13-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-13-enoate

C39H75O10P (734.5098)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-6-enoate

C39H75O10P (734.5098)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-7-enoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-7-enoate

C42H70O10 (734.4969)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-4-enoate

C39H75O10P (734.5098)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] octadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] octadecanoate

C39H75O10P (734.5098)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-7-enoate

C39H75O10P (734.5098)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-11-enoate

C39H75O10P (734.5098)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H70O10 (734.4969)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-13-enoate

C39H75O10P (734.5098)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H68NO7+ (734.4996)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-docos-13-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-docos-13-enoate

C39H75O10P (734.5098)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H70O10 (734.4969)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H68NO7+ (734.4996)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] heptadecanoate

C39H75O10P (734.5098)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] octadec-17-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] octadec-17-enoate

C39H75O10P (734.5098)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-docos-13-enoate

C39H75O10P (734.5098)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C39H75O10P (734.5098)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-4-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-4-enoate

C39H75O10P (734.5098)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-13-enoate

C39H75O10P (734.5098)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] heptadecanoate

C39H75O10P (734.5098)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-9-enoate

C39H75O10P (734.5098)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-7-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-7-enoate

C39H75O10P (734.5098)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H70O10 (734.4969)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadec-17-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadec-17-enoate

C39H75O10P (734.5098)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H70O10 (734.4969)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

C39H75O10P (734.5098)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

C42H70O10 (734.4969)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-11-enoate

C39H75O10P (734.5098)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-6-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-6-enoate

C39H75O10P (734.5098)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H70O10 (734.4969)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] nonadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] nonadecanoate

C39H75O10P (734.5098)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C42H70O10 (734.4969)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C42H70O10 (734.4969)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] nonadecanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] nonadecanoate

C39H75O10P (734.5098)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

C42H70O10 (734.4969)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] heptadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] heptadecanoate

C39H75O10P (734.5098)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H70O10 (734.4969)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C42H70O10 (734.4969)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-13-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-13-enoate

C39H75O10P (734.5098)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

C42H70O10 (734.4969)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] (E)-heptadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] (E)-heptadec-9-enoate

C39H75O10P (734.5098)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-11-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-11-enoate

C39H75O10P (734.5098)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C42H70O10 (734.4969)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] octadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] octadecanoate

C39H75O10P (734.5098)


   

1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine(1-)

1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine(1-)

C38H73NO10P (734.4972)


A 3-sn-phosphatidyl-L-serine(1-) that is the conjugate base of 1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine; major species at pH 7.3.

   

(9S)-erythromycyclamine

(9S)-erythromycyclamine

C37H70N2O12 (734.4929)


A macrolide antibiotic that is erythromycin A in which the ketone group has been converted to the corresponding imine and then reduced to give the corresponding amino compound (the 9S diastereoisomer).

   

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.5098)


   

phosphatidylglycerol 33:1

phosphatidylglycerol 33:1

C39H75O10P (734.5098)


A phosphatidylglycerol in which the two acyl groups contain a total of 33 carbon atoms and 1 double bond.

   

phosphatidylglycerol 15:0/18:1

phosphatidylglycerol 15:0/18:1

C39H75O10P (734.5098)


A phosphatidylglycerol 33:1 in which the acyl group at position 1 contains 15 carbons and no double bonds while that at position 2 contains 18 carbons and 1 double bond.

   

phosphatidylserine 32:0(1-)

phosphatidylserine 32:0(1-)

C38H73NO10P (734.4972)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 32 carbons in total and 0 double bonds.

   

phosphatidylglycerol (16:0/17:1)

phosphatidylglycerol (16:0/17:1)

C39H75O10P (734.5098)


A phosphatidylglycerol 33:1 in which the acyl group at C-1 contains 16 carbons and no double bonds while that at C-2 contains 17 carbons and 1 double bond.

   

MGDG(33:5)

MGDG(18:1_15:4)

C42H70O10 (734.4969)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG 11:0_22:5

MGDG 11:0_22:5

C42H70O10 (734.4969)


   

MGDG 13:0_20:5

MGDG 13:0_20:5

C42H70O10 (734.4969)


   

MGDG 15:1_18:4

MGDG 15:1_18:4

C42H70O10 (734.4969)


   
   

MGDG O-33:6;O

MGDG O-33:6;O

C42H70O10 (734.4969)


   
   

PA 18:0/18:1;O2

PA 18:0/18:1;O2

C39H75O10P (734.5098)


   
   
   
   
   
   
   
   
   
   
   

2-(6-{6-[2-(5-ethyl-5-hydroxy-6-methyloxan-2-yl)-2,10,12-trimethyl-1,6,8-trioxadispiro[4.1.5⁷.3⁵]pentadec-13-en-9-yl]-3-hydroxy-4-methyl-5-oxooctan-2-yl}-5-methyloxan-2-yl)butanoic acid

2-(6-{6-[2-(5-ethyl-5-hydroxy-6-methyloxan-2-yl)-2,10,12-trimethyl-1,6,8-trioxadispiro[4.1.5⁷.3⁵]pentadec-13-en-9-yl]-3-hydroxy-4-methyl-5-oxooctan-2-yl}-5-methyloxan-2-yl)butanoic acid

C42H70O10 (734.4969)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-6-{[(3s,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4r,5r,6r)-6-{[(3s,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O10 (734.4969)


   

(2r)-2-[(2r,5s,6r)-6-[(2s,3s,4s,6r)-6-[(2s,5s,7r,9s,10s,12r)-2-[(2r,5r,6s)-5-ethyl-5-hydroxy-6-methyloxan-2-yl]-2,10,12-trimethyl-1,6,8-trioxadispiro[4.1.5⁷.3⁵]pentadec-13-en-9-yl]-3-hydroxy-4-methyl-5-oxooctan-2-yl]-5-methyloxan-2-yl]butanoic acid

(2r)-2-[(2r,5s,6r)-6-[(2s,3s,4s,6r)-6-[(2s,5s,7r,9s,10s,12r)-2-[(2r,5r,6s)-5-ethyl-5-hydroxy-6-methyloxan-2-yl]-2,10,12-trimethyl-1,6,8-trioxadispiro[4.1.5⁷.3⁵]pentadec-13-en-9-yl]-3-hydroxy-4-methyl-5-oxooctan-2-yl]-5-methyloxan-2-yl]butanoic acid

C42H70O10 (734.4969)


   

2-({6-[(4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-yl)oxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl}oxy)-6-methyloxane-3,4,5-triol

2-({6-[(4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-yl)oxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl}oxy)-6-methyloxane-3,4,5-triol

C42H70O10 (734.4969)