Exact Mass: 729.56721

Exact Mass Matches: 729.56721

Found 182 metabolites which its exact mass value is equals to given mass value 729.56721, within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error 0.0002 dalton.

PC(15:0/P-18:1(11Z))

trimethyl[2-({2-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]-3-(pentadecanoyloxy)propyl phosphonato}oxy)ethyl]azanium

C41H80NO7P (729.5672099999999)


PC(15:0/P-18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/P-18:1(11Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(15:0/P-18:1(9Z))

trimethyl[2-({2-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]-3-(pentadecanoyloxy)propyl phosphonato}oxy)ethyl]azanium

C41H80NO7P (729.5672099999999)


PC(15:0/P-18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/P-18:1(9Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(15:0/P-18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/P-18:1(9Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(18:0/P-18:1(11Z))

(2-aminoethoxy)[(2R)-2-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(18:0/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/P-18:1(11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(18:0/P-18:1(9Z))

(2-aminoethoxy)[(2R)-2-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(18:0/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/P-18:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(18:1(11Z)/P-18:0)

(2-aminoethoxy)[(2R)-2-[(1Z)-octadec-1-en-1-yloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(18:1(11Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/P-18:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(18:1(9Z)/P-18:0)

(2-aminoethoxy)[(2R)-2-[(1Z)-octadec-1-en-1-yloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(18:1(9Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/P-18:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(20:1(11Z)/P-16:0)

(2-aminoethoxy)[(2R)-2-[(1Z)-hexadec-1-en-1-yloxy]-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(20:1(11Z)/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/P-16:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(P-18:1(11Z)/15:0)

trimethyl(2-{[(2R)-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]-2-(pentadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C41H80NO7P (729.5672099999999)


PC(P-18:1(11Z)/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(11Z)/15:0), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(P-18:1(9Z)/15:0)

trimethyl[2-({3-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]-2-(pentadecanoyloxy)propyl phosphonato}oxy)ethyl]azanium

C41H80NO7P (729.5672099999999)


PC(P-18:1(9Z)/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(9Z)/15:0), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:1(9Z)/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(9Z)/15:0), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-16:0/20:1(11Z))

(2-aminoethoxy)[(2R)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(P-16:0/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/20:1(11Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of eicosenoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(P-18:0/18:1(11Z))

(2-aminoethoxy)[(2R)-3-[(1Z)-octadec-1-en-1-yloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(P-18:0/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/18:1(11Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of vaccenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(dm18:0/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(dm18:0/18:1(11Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of vaccenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:0/18:1(9Z))

(2-aminoethoxy)[(2R)-3-[(1Z)-octadec-1-en-1-yloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(P-18:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/18:1(9Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of oleic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/18:1(9Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of oleic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:1(11Z)/18:0)

(2-aminoethoxy)[(2R)-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(P-18:1(11Z)/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/18:0), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of stearic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(P-18:1(9Z)/18:0)

(2-aminoethoxy)[(2R)-3-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


PE(P-18:1(9Z)/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/18:0), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of stearic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(9Z)/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/18:0), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of stearic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

Phosphatidylethanolamine alkenyl 18:0-18:1

Phosphatidylethanolamine alkenyl 18:0-18:1

C41H80NO7P (729.5672099999999)


   

Phosphatidylethanolamine alkyl 18:0-18:2

Phosphatidylethanolamine alkyl 18:0-18:2

C41H80NO7P (729.5672099999999)


   

(2-aminoethoxy)[3-[octadec-1-en-1-yloxy]-2-[octadec-9-enoyloxy]propoxy]phosphinic acid

(2-aminoethoxy)[3-[octadec-1-en-1-yloxy]-2-[octadec-9-enoyloxy]propoxy]phosphinic acid

C41H80NO7P (729.5672099999999)


   

PE(P-18:0/18:1)

1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine

C41H80NO7P (729.5672099999999)


   

Lecithin

1-(1-Enyl-vaccenoyl)-2-pentadecanoyl-sn-glycero-3-phosphocholine

C41H80NO7P (729.5672099999999)


   

PE(36:1)

1-(1-Enyl-palmitoyl)-2-eicosenoyl-sn-glycero-3-phosphoethanolamine

C41H80NO7P (729.5672099999999)


   

PC(O-16:0/17:2(9Z,12Z))

1-hexadecyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C41H80NO7P (729.5672099999999)


   

PC(P-16:0/17:1(9Z))

1-(1Z-hexadecenyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C41H80NO7P (729.5672099999999)


   

PC(P-18:0/15:1(9Z))

1-(1Z-octadecenyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C41H80NO7P (729.5672099999999)


   

PE(O-16:0/20:2(11Z,14Z))

1-hexadecyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoethanolamine

C41H80NO7P (729.5672099999999)


   

PE(O-18:0/18:2(9Z,12Z))

1-octadecyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoethanolamine

C41H80NO7P (729.5672099999999)


   

PE(P-20:0/16:1(9Z))

1-(1Z-eicosenyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

C41H80NO7P (729.5672099999999)


   

PC O-33:2

1-(1Z-octadecenyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C41H80NO7P (729.5672099999999)


   

PE(P-18:0/18:1)

(2-aminoethoxy)[(2R)-3-[(1Z)-octadec-1-en-1-yloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C41H80NO7P (729.56721)


   

2-azaniumylethyl (2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(1Z)-octadec-1-en-1-yloxy]propyl phosphate

2-azaniumylethyl (2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(1Z)-octadec-1-en-1-yloxy]propyl phosphate

C41H80NO7P (729.5672099999999)


   

1-(1Z-octadecenyl)-sn-glycero-3-phospho-(N-oleoyl)ethanolamine

1-(1Z-octadecenyl)-sn-glycero-3-phospho-(N-oleoyl)ethanolamine

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (Z)-octadec-9-enoate

C41H80NO7P (729.5672099999999)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (25Z,28Z)-hexatriaconta-25,28-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (25Z,28Z)-hexatriaconta-25,28-dienoate

C41H80NO7P (729.5672099999999)


   

[3-nonoxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-nonoxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(17Z,20Z)-octacosa-17,20-dienoxy]propan-2-yl] octanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(17Z,20Z)-octacosa-17,20-dienoxy]propan-2-yl] octanoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate

C41H80NO7P (729.5672099999999)


   

[2-nonanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-nonanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[3-[(17Z,20Z)-octacosa-17,20-dienoxy]-2-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(17Z,20Z)-octacosa-17,20-dienoxy]-2-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[2-heptanoyloxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptanoyloxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] dodecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] dodecanoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] heptadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] heptadecanoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (Z)-heptadec-9-enoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] pentadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] pentadecanoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (Z)-pentadec-9-enoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] tetradecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] tetradecanoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (Z)-tetradec-9-enoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (Z)-nonadec-9-enoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] nonadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] nonadecanoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-henicos-11-enoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] decanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] decanoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] hexadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] hexadecanoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C41H80NO7P (729.5672099999999)


   

[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[3-heptadecoxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecoxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[3-dodecoxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecoxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[3-[(Z)-icos-11-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-icos-11-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[3-[(Z)-heptadec-9-enoxy]-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoxy]-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[3-[(Z)-nonadec-9-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-nonadec-9-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[2-dodecanoyloxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-dodecanoyloxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-docos-13-enoate

C41H80NO7P (729.5672099999999)


   

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C41H80NO7P (729.5672099999999)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hexadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hexadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] icosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] icosanoate

C41H80NO7P (729.5672099999999)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[2-[(Z)-nonadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-nonadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C41H80NO7P (729.5672099999999)


   

[2-heptadecanoyloxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptadecanoyloxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C41H80NO7P (729.5672099999999)


   

[3-[(Z)-octadec-9-enoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-octadec-9-enoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] octadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] octadecanoate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (Z)-icos-11-enoate

C41H80NO7P (729.5672099999999)


   

[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (4Z,7Z)-octadeca-4,7-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (4Z,7Z)-octadeca-4,7-dienoate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-9-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-3-[(E)-octadec-1-enoxy]-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-octadec-1-enoxy]-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (E)-hexadec-7-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (E)-hexadec-7-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (E)-hexadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (E)-hexadec-9-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-4-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-11-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-13-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (E)-icos-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (E)-icos-11-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] octadec-17-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] octadec-17-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (E)-icos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (E)-icos-13-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-6-enoate

C41H80NO7P (729.5672099999999)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-hexadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-hexadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H80NO7P (729.5672099999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (E)-octadec-7-enoate

C41H80NO7P (729.5672099999999)


   

1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine

1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine

C41H80NO7P (729.5672099999999)


A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine in which the alk-1-enyl and acyl groups are specified as (1Z)-octadecenyl and (9Z)-octadecenoyl respectively.

   

1-(1-Enyl-oleoyl)-2-pentadecanoyl-sn-glycero-3-phosphocholine

1-(1-Enyl-oleoyl)-2-pentadecanoyl-sn-glycero-3-phosphocholine

C41H80NO7P (729.5672099999999)


   

1-Pentadecanoyl-2-(1-enyl-oleoyl)-sn-glycero-3-phosphocholine

1-Pentadecanoyl-2-(1-enyl-oleoyl)-sn-glycero-3-phosphocholine

C41H80NO7P (729.5672099999999)


   

1-stearoyl-2-(1-enyl-vaccenoyl)-sn-glycero-3-phosphoethanolamine

1-stearoyl-2-(1-enyl-vaccenoyl)-sn-glycero-3-phosphoethanolamine

C41H80NO7P (729.5672099999999)


   

1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine zwitterion

1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine zwitterion

C41H80NO7P (729.5672099999999)


A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine zwitterion in which the alk-1-enyl and acyl groups are specified as (1Z)-octadecenyl and (9Z)-octadecenoyl respectively; major species at pH 7.3.

   

MePC(32:2)

MePC(14:0(1)_18:2)

C41H80NO7P (729.5672099999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

CerP(41:2)

CerP(t16:0_25:2)

C41H80NO7P (729.5672099999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(34:2)

dMePE(16:0(1)_18:2)

C41H80NO7P (729.5672099999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved