Exact Mass: 727.5903132
Exact Mass Matches: 727.5903132
Found 190 metabolites which its exact mass value is equals to given mass value 727.5903132
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
GlcCer(d18:1/18:0)
GlcCer(d18:1/18:0) is a glycosphingolipid (ceramide and oligosaccharide)or oligoglycosylceramide with one or more sialic acids (i.e. n-acetylneuraminic acid) linked on the sugar chain. It is a component the cell plasma membrane which modulates cell signal transduction events. Gangliosides have been found to be highly important in immunology. Ganglioside GL1a carries a net-negative charge at pH 7.0 and is acidic. Gangliosides can amount to 6\\% of the weight of lipids from brain, but they are found at low levels in all animal tissues.Cerebrosides are glycosphingolipids. There are four types of glycosphingolipids, the cerebrosides, sulfatides, globosides and gangliosides. Cerebrosides have a single sugar group linked to ceramide. The most common are galactocerebrosides (containing galactose), the least common are glucocerebrosides (containing glucose). Galactocerebrosides are found predominantly in neuronal cell membranes. In contrast glucocerebrosides are not normally found in membranes. Instead, they are typically intermediates in the synthesis or degradation of more complex glycosphingolipids. Galactocerebrosides are synthesized from ceramide and UDP-galactose. Excess lysosomal accumulation of glucocerebrosides is found in Gaucher disease. A glycosphingolipid (ceramide and oligosaccharide)or oligoglycosylceramide with one or more sialic acids (i.e. n-acetylneuraminic acid) linked on the sugar chain. It is a component the cell plasma membrane which modulates cell signal transduction events. Gangliosides have been found to be highly important in immunology. Ganglioside GL1a carries a net-negative charge at pH 7.0 and is acidic. Gangliosides can amount to 6\\% of the weight of lipids from brain, but they are found at low levels in all animal tissues.
CerP(d18:1/24:1(15Z))
CerP(d18:1/24:1(15Z)) is a ceramide 1-phosphate belonging to the sphingolipid class of molecules. Ceramides are amides of fatty acids with long-chain di- or trihydroxy bases, the commonest in animals being sphingosine and in plants phytosphingosine. The acyl group of ceramides is generally a long-chain saturated or monounsaturated fatty acid. The most frequent fatty acids found in animal ceramides are 18:0, 24:0 and 24:1(n-9). Ceramide 1-phosphates are produced by phosphorylation of ceramide by a specific ceramide kinase. Ceramide-1-phosphate was shown to be a specific and potent inducer of arachidonic acid and prostanoid synthesis in cells through the translocation and activation of the cytoplasmic phospholipase A2. [HMDB] CerP(d18:1/24:1(15Z)) is a ceramide 1-phosphate belonging to the sphingolipid class of molecules. Ceramides are amides of fatty acids with long-chain di- or trihydroxy bases, the commonest in animals being sphingosine and in plants phytosphingosine. The acyl group of ceramides is generally a long-chain saturated or monounsaturated fatty acid. The most frequent fatty acids found in animal ceramides are 18:0, 24:0 and 24:1(n-9). Ceramide 1-phosphates are produced by phosphorylation of ceramide by a specific ceramide kinase. Ceramide-1-phosphate was shown to be a specific and potent inducer of arachidonic acid and prostanoid synthesis in cells through the translocation and activation of the cytoplasmic phospholipase A2.
Galactosylceramide (d18:1/18:0)
Galactosylceramides (GalCer) are non-acidic monoglycosphingolipids, i.e. a sphingolipid with one carbohydrate moiety attached to a ceramide unit. They are an intermediate in sphingolipid metabolism and is the second to last step in the synthesis of digalactosylceramidesulfate. GalCer is generated from ceramide via the enzyme UDP-galactose ceramide galactosyltransferase [EC:2.4.1.47]. It can be converted to digalactosylceramide via the enzyme glycosyltransferases [EC 2.4.1.-]. Galactosylceramide is the principal glycosphingolipid in brain tissue, hence the trivial name "cerebroside", which was first conferred on it in 1874. Galactosylceramides are found in all nervous tissues, but they can amount to 2\\% of the dry weight of grey matter and 12\\% of white matter. They are major constituents of oligodendrocytes. Synthesis of galactosylceramide takes place on the lumenal surface of the endoplasmic reticulum, although it has free access to the cytosolic surface by an energy-independent flip-flop process. GalCer sits in the extracellular leaflet of cell membranes in nanometer sized domains or rafts. The local clustering of GalCer within rafts is thought to facilitate the initial adhesion of certain viruses, including HIV-1 and bacteria to cells through multivalent interactions between receptor proteins and GalCer. A defect in the degradation of cerbrosides leads to a disorder called Krabbe disease. Krabbe disease (also known as globoid cell leukodystrophy or galactosylceramide lipidosis) is a rare, often fatal degenerative disorder that affects the myelin sheath of the nervous system. Krabbe disease is caused by mutations in the GALC gene, which causes a deficiency of galactosylceramidase. Infants with Krabbe disease are normal at birth. Symptoms begin between the ages of 3 and 6 months with irritability, fevers, limb stiffness, seizures, feeding difficulties, vomiting, and slowing of mental and motor development. There are also juvenile- and adult-onset cases of Krabbe disease, which have similar symptoms but slower progression. In infants, the disease is generally fatal before age 2. Patients with late-onset Krabbe disease tend to have a slower progression of the disease and live significantly longer.Cerebrosides are glycosphingolipids. There are four types of glycosphingolipids, the cerebrosides, sulfatides, globosides and gangliosides. Cerebrosides have a single sugar group linked to ceramide. The most common are galactocerebrosides (containing galactose), the least common are glucocerebrosides (containing glucose). Galactocerebrosides are found predominantly in neuronal cell membranes. In contrast glucocerebrosides are not normally found in membranes. Instead, they are typically intermediates in the synthesis or degradation of more complex glycosphingolipids. Galactocerebrosides are synthesized from ceramide and UDP-galactose. Excess lysosomal accumulation of glucocerebrosides is found in Gaucher disease. GGalactosylceramide (GalCer) is a non-acidic monoglycosphingolipid, i.e. a sphingolipid with one carbohydrate moiety attached to a ceramide unit. It is an intermediate in sphingolipid metabolism and is the second to last step in the synthesis of digalactosylceramidesulfate. GalCer is generated from ceramide via the enzyme UDP-galactose ceramide galactosyltransferase [EC:2.4.1.47]. It can be converted to digalactosylceramide via the enzyme glycosyltransferases [EC 2.4.1.-]. Galactosylceramide is the principal glycosphingolipid in brain tissue, hence the trivial name "cerebroside", which was first conferred on it in 1874. Galactosylceramides are found in all nervous tissues, but they can amount to 2\\% of the dry weight of grey matter and 12\\% of white matter. They are major constituents of oligodendrocytes. Synthesis of galactosylceramide takes place on the lumenal surface of the endoplasmic reticulum, although it has free access to the cytosolic surface by an energy-independent flip-flop process. GalCer sits in the extracellular leaflet of cell membranes in nanometer sized domains or rafts. The local clustering of GalCer within rafts is thought to facilitate the initial adhesion of certain viruses, including HIV-1 and bacteria to cells through multivalent interactions between receptor proteins and GalCer. A defect in the degradation of cerbrosides leads to a disorder called Krabbe disease. Krabbe disease (also known as globoid cell leukodystrophy or galactosylceramide lipidosis) is a rare, often fatal degenerative disorder that affects the myelin sheath of the nervous system. Krabbe disease is caused by mutations in the GALC gene, which causes a deficiency of galactosylceramidase. Infants with Krabbe disease are normal at birth. Symptoms begin between the ages of 3 and 6 months with irritability, fevers, limb stiffness, seizures, feeding difficulties, vomiting, and slowing of mental and motor development. There are also juvenile- and adult-onset cases of Krabbe disease, which have similar symptoms but slower progression. In infants, the disease is generally fatal before age 2. Patients with late-onset Krabbe disease tend to have a slower progression of the disease and live significantly longer.
PC(P-16:0/P-18:1(11Z))
PC(P-16:0/P-18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/P-18:1(11Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(P-16:0/P-18:1(9Z))
PC(P-16:0/P-18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/P-18:1(9Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(P-18:1(11Z)/P-16:0)
PC(P-18:1(11Z)/P-16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(11Z)/P-16:0), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(P-18:1(9Z)/P-16:0)
PC(P-18:1(9Z)/P-16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(9Z)/P-16:0), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
N-[3-hydroxy-1-{[3.4.5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadec-4-en-2-yl]octadecanamide
beta-D-galactosyl-N-octadecanoylsphingosine
A beta-D-galactosyl-N-acylsphingosine in which the acyl group is specified as octadecanoyl.
N-nonadecanoyl-1-O-beta-D-glucosyl-15-methylhexadecasphing-4-enine
N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-4-en-2-yl]octadecanamide
2-(3-Octanoyloxy-2-tetracosanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(4E,8E,12E)-1,3-dihydroxynonadeca-4,8,12-trien-2-yl]triaconta-6,9,12,15,18,21,24,27-octaenamide
(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(4E,8E,12E)-1,3-dihydroxyheptadeca-4,8,12-trien-2-yl]dotriaconta-8,11,14,17,20,23,26,29-octaenamide
(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(4E,8E)-1,3-dihydroxyheptadeca-4,8-dien-2-yl]dotriaconta-5,8,11,14,17,20,23,26,29-nonaenamide
2-(3-Nonanoyloxy-2-tricosanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(4E,8E,12E)-1,3-dihydroxypentadeca-4,8,12-trien-2-yl]tetratriaconta-10,13,16,19,22,25,28,31-octaenamide
(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(4E,8E)-1,3-dihydroxytrideca-4,8-dien-2-yl]hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenamide
(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-(1,3-dihydroxynonan-2-yl)tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenamide
(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-[(E)-1,3-dihydroxynon-4-en-2-yl]tetraconta-10,13,16,19,22,25,28,31,34,37-decaenamide
(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(4E,8E)-1,3-dihydroxypentadeca-4,8-dien-2-yl]tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenamide
2-[2,3-Di(hexadecanoyloxy)propoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Henicosanoyloxy-3-undecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Nonadecanoyloxy-3-tridecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Octadecanoyloxy-3-tetradecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Heptadecanoyloxy-3-pentadecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(3-Decanoyloxy-2-docosanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(3-Dodecanoyloxy-2-icosanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(E)-1,3-dihydroxytridec-4-en-2-yl]hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenamide
(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-N-[(E)-1,3-dihydroxyundec-4-en-2-yl]octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetracosan-2-yl]dodec-5-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradecan-2-yl]docos-11-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytricosan-2-yl]tridec-8-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosan-2-yl]hexadec-7-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadecan-2-yl]henicos-9-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadecan-2-yl]octadec-11-enamide
N-(tetradecanoyl)-1-beta-glucosyl-4E-docosasphingenine
N-(pentadecanoyl)-1-beta-glucosyl-4E-heneicosasphingenine
N-(hexadecanoyl)-1-beta-glucosyl-4E-eicosasphingenine
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-8-en-2-yl]octadecanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradec-4-en-2-yl]docosanamide
(E)-N-[(2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadecan-2-yl]heptadec-9-enamide
[(E,2S,3R)-2-[[(E)-hexacos-17-enoyl]amino]-3-hydroxyhexadec-4-enyl] dihydrogen phosphate
N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-8-en-2-yl]pentadecanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadec-4-en-2-yl]nonadecanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadec-4-en-2-yl]henicosanamide
(E)-N-[(2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradecan-2-yl]docos-13-enamide
N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicos-8-en-2-yl]hexadecanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-8-en-2-yl]heptadecanamide
(E)-N-[(2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosan-2-yl]hexadec-9-enamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradec-8-en-2-yl]docosanamide
[(E,2S,3R)-3-hydroxy-2-[[(E)-tetracos-15-enoyl]amino]octadec-4-enyl] dihydrogen phosphate
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadec-8-en-2-yl]icosanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxydocos-8-en-2-yl]tetradecanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadec-8-en-2-yl]nonadecanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadec-4-en-2-yl]icosanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-4-en-2-yl]heptadecanamide
(E)-N-[(2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadecan-2-yl]icos-11-enamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-4-en-2-yl]octadecanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadec-8-en-2-yl]henicosanamide
(E)-N-[(2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadecan-2-yl]octadec-9-enamide
beta-D-glucosyl-N-octadecanoylsphingosine
A beta-D-glucosyl-N-acylsphingosine in which the acyl group is specified as octadecanoyl.
N-tetracosanoylsphingosine 1-phosphate(2-)
A ceramide 1-phosphate(2-) in which the N-acyl group is specified as tetracosanoyl.
N-[(15Z)-tetracosenoyl]sphingosine 1-phosphate
An N-acylsphingosine 1-phosphate in which the N-acyl group is specified as (15Z)-tetracosenoyl.
Hex1Cer(36:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved