Exact Mass: 726.514253
Exact Mass Matches: 726.514253
Found 208 metabolites which its exact mass value is equals to given mass value 726.514253
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
PA(16:1(9Z)/22:2(13Z,16Z))
PA(16:1(9Z)/22:2(13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/22:2(13Z,16Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:0/20:3(5Z,8Z,11Z))
PA(18:0/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:2(9Z,12Z)/20:1(11Z))
PA(18:2(9Z,12Z)/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/20:1(11Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(6Z,9Z,12Z)/20:0)
PA(18:3(6Z,9Z,12Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/20:0), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(9Z,12Z,15Z)/20:0)
PA(18:3(9Z,12Z,15Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/20:0), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/18:3(6Z,9Z,12Z))
PA(20:0/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/18:3(9Z,12Z,15Z))
PA(20:0/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:1(11Z)/18:2(9Z,12Z))
PA(20:1(11Z)/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/18:2(9Z,12Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:3(5Z,8Z,11Z)/18:0)
PA(20:3(5Z,8Z,11Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/18:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:2(13Z,16Z)/16:1(9Z))
PA(22:2(13Z,16Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:2(13Z,16Z)/16:1(9Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:0/20:3(8Z,11Z,14Z))
PA(18:0/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:1(11Z)/20:2(11Z,14Z))
PA(18:1(11Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/20:2(11Z,14Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:1(9Z)/20:2(11Z,14Z))
PA(18:1(9Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/20:2(11Z,14Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:2(11Z,14Z)/18:1(11Z))
PA(20:2(11Z,14Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/18:1(11Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:2(11Z,14Z)/18:1(9Z))
PA(20:2(11Z,14Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/18:1(9Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:3(8Z,11Z,14Z)/18:0)
PA(20:3(8Z,11Z,14Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/18:0), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
(22R,32R,33R,34S)-3beta-methyl-bacteriohop-11-ene-32,33,34,35-tetrol tetraacetate
(22R,32R,33R,34S)-3beta-methyl-bacteriohop-6-ene-32,33,34,35-tetrol tetraacetate
1,2-Distearoyl-sn-glycero-3-phosphate (sodium salt)
2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[(2R)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[(2R)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[[(2R)-3-dodecanoyloxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-nonadec-9-enoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] docosanoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate
[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] icosanoate
[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate
(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-henicos-11-enoate
[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
2-[hydroxy-[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
2-[[(2S)-2-dodecanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate
[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
[(2R)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate
[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] docosanoate
[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate
[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate
[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate
2-[[(2R)-3-dodecanoyloxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
2-[hydroxy-[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate
[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate
2-[hydroxy-[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
2-[hydroxy-[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate
2-[2,3-bis[[(4E,7E)-hexadeca-4,7-dienoyl]oxy]propoxy-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
2-[[(2R)-3-dodecanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate
[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
2-[[3-hexadecanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
2-[hydroxy-[(2R)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
2-[hydroxy-[(2R)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[[(2R)-3-decanoyloxy-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (E)-docos-11-enoate
2-[[(2S)-2-decanoyloxy-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
2-[[(2S)-2-dodecanoyloxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
2-[[3-hexadecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[3-octanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[2,3-bis[[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy]propoxy-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[[3-decanoyloxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[[3-dodecanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C40H73NO8P+ (726.5073527999999)
TG(45:12)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(36:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PEt(36:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved