Exact Mass: 723.5651990000001
Exact Mass Matches: 723.5651990000001
Found 416 metabolites which its exact mass value is equals to given mass value 723.5651990000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PE(18:3(6Z,9Z,12Z)/P-18:1(11Z))
C41H74NO7P (723.5202623999999)
PE(18:3(6Z,9Z,12Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/P-18:1(11Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(18:3(6Z,9Z,12Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/P-18:1(11Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(18:3(6Z,9Z,12Z)/P-18:1(9Z))
C41H74NO7P (723.5202623999999)
PE(18:3(6Z,9Z,12Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/P-18:1(9Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(18:3(6Z,9Z,12Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/P-18:1(9Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(18:3(9Z,12Z,15Z)/P-18:1(11Z))
C41H74NO7P (723.5202623999999)
PE(18:3(9Z,12Z,15Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(9Z,12Z,15Z)/P-18:1(11Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(18:3(9Z,12Z,15Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(9Z,12Z,15Z)/P-18:1(11Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(18:3(9Z,12Z,15Z)/P-18:1(9Z))
C41H74NO7P (723.5202623999999)
PE(18:3(9Z,12Z,15Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(9Z,12Z,15Z)/P-18:1(9Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(18:3(9Z,12Z,15Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(9Z,12Z,15Z)/P-18:1(9Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(18:4(6Z,9Z,12Z,15Z)/P-18:0)
C41H74NO7P (723.5202623999999)
PE(18:4(6Z,9Z,12Z,15Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/P-18:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(18:4(6Z,9Z,12Z,15Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/P-18:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:4(5Z,8Z,11Z,14Z)/P-16:0)
C41H74NO7P (723.5202623999999)
PE(20:4(5Z,8Z,11Z,14Z)/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/P-16:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(20:4(8Z,11Z,14Z,17Z)/P-16:0)
C41H74NO7P (723.5202623999999)
PE(20:4(8Z,11Z,14Z,17Z)/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/P-16:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(20:4(8Z,11Z,14Z,17Z)/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/P-16:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(P-16:0/20:4)
PE(P-16:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of arachidonic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(P-16:0/20:4(8Z,11Z,14Z,17Z))
C41H74NO7P (723.5202623999999)
PE(P-16:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-16:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(P-18:0/18:4(6Z,9Z,12Z,15Z))
C41H74NO7P (723.5202623999999)
PE(P-18:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of stearidonic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of stearidonic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(P-18:1(11Z)/18:3(6Z,9Z,12Z))
C41H74NO7P (723.5202623999999)
PE(P-18:1(11Z)/18:3(6Z,9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of g-linolenic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(11Z)/18:3(6Z,9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of g-linolenic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(P-18:1(11Z)/18:3(9Z,12Z,15Z))
C41H74NO7P (723.5202623999999)
PE(P-18:1(11Z)/18:3(9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of a-linolenic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(P-18:1(9Z)/18:3(6Z,9Z,12Z))
C41H74NO7P (723.5202623999999)
PE(P-18:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of g-linolenic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of g-linolenic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(P-18:1(9Z)/18:3(9Z,12Z,15Z))
C41H74NO7P (723.5202623999999)
PE(P-18:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of a-linolenic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of a-linolenic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
Phosphatidylethanolamine alkenyl 16:0-20:4
C41H74NO7P (723.5202623999999)
(2-aminoethoxy)[3-[hexadec-1-en-1-yloxy]-2-[icosa-5.8.11.14-tetraenoyloxy]propoxy]phosphinic acid
C41H74NO7P (723.5202623999999)
PE(36:4)
C41H74NO7P (723.5202623999999)
1-Eicsoate
C41H74NO7P (723.5202623999999)
PE(O-16:0/20:5(5Z,8Z,11Z,14Z,17Z))
C41H74NO7P (723.5202623999999)
PE O-36:5
C41H74NO7P (723.5202623999999)
2-azaniumylethyl (2R)-3-{[(1Z)-hexadec-1-en-1-yl]oxy}-2-{[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxy}propyl phosphate
C41H74NO7P (723.5202623999999)
1-O-(alpha-D-galactopyranosyl)-N-(11-phenylundecanoyl)phytosphingosine
A glycophytoceramide having an alpha-D-galactopyranosyl residue at the O-1 position and an 11-phenylundecanoyl group attached to the nitrogen.
2-[[(2S,3S,4R)-3,4-dihydroxy-2-(2-hydroxyhexadecanoylamino)-15-methylhexadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C38H80N2O8P+ (723.5651990000001)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
C41H74NO7P (723.5202623999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (21Z,24Z,27Z,30Z,33Z)-hexatriaconta-21,24,27,30,33-pentaenoate
C41H74NO7P (723.5202623999999)
[3-nonoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
2-[3-octanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-decanoyloxy-2-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-dodecanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2,3-bis[[(Z)-hexadec-9-enoyl]oxy]propoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hexadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-pentadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
(4E,8E)-3-hydroxy-2-[[(14Z,16Z)-2-hydroxydocosa-14,16-dienoyl]amino]icosa-4,8-diene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxynonadec-9-enoyl]amino]tricosa-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxyhexadec-7-enoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxyhenicos-9-enoyl]amino]henicosa-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E)-3-hydroxy-2-[[(4Z,7Z)-2-hydroxyhexadeca-4,7-dienoyl]amino]hexacosa-4,8-diene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propan-2-yl] octanoate
C41H74NO7P (723.5202623999999)
(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyicosa-11,14-dienoyl]amino]docosa-4,8-diene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyhexacosa-11,14-dienoyl]amino]hexadeca-4,8-diene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate
C41H74NO7P (723.5202623999999)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxyoctadec-11-enoyl]amino]tetracosa-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxypentacos-11-enoyl]amino]heptadeca-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxyhexacos-11-enoyl]amino]hexadeca-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxytetracos-11-enoyl]amino]octadeca-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E)-3-hydroxy-2-[[(10Z,12Z)-2-hydroxyoctadeca-10,12-dienoyl]amino]tetracosa-4,8-diene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxytricos-11-enoyl]amino]nonadeca-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxydocos-11-enoyl]amino]icosa-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E)-3-hydroxy-2-[[(18Z,21Z)-2-hydroxytetracosa-18,21-dienoyl]amino]octadeca-4,8-diene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxyicos-11-enoyl]amino]docosa-4,8,12-triene-1-sulfonic acid
C42H77NO6S (723.5471302000001)
[2-nonanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[2-heptanoyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]-2-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
(4E,8E)-3-hydroxy-2-[[(Z)-tetracos-13-enoyl]amino]nonadeca-4,8-diene-1-sulfonic acid
(E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyhexacos-4-ene-1-sulfonic acid
(4E,8E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxyhexacosa-4,8-diene-1-sulfonic acid
(4E,8E)-2-[[(Z)-henicos-11-enoyl]amino]-3-hydroxydocosa-4,8-diene-1-sulfonic acid
(E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxydocos-4-ene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-(tricosanoylamino)icosa-4,8,12-triene-1-sulfonic acid
(4E,8E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]tetracosa-4,8-diene-1-sulfonic acid
3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]pentacosane-1-sulfonic acid
(4E,8E,12E)-2-(docosanoylamino)-3-hydroxyhenicosa-4,8,12-triene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
C41H74NO7P (723.5202623999999)
(4E,8E,12E)-2-(henicosanoylamino)-3-hydroxydocosa-4,8,12-triene-1-sulfonic acid
(E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxyhenicos-4-ene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
C41H74NO7P (723.5202623999999)
(4E,8E,12E)-2-(heptadecanoylamino)-3-hydroxyhexacosa-4,8,12-triene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-(pentacosanoylamino)octadeca-4,8,12-triene-1-sulfonic acid
(4E,8E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]tricosa-4,8-diene-1-sulfonic acid
(E)-2-[[(15Z,18Z)-hexacosa-15,18-dienoyl]amino]-3-hydroxyheptadec-4-ene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] decanoate
C41H74NO7P (723.5202623999999)
(E)-3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]nonadec-4-ene-1-sulfonic acid
(4E,8E)-2-[[(Z)-hexacos-15-enoyl]amino]-3-hydroxyheptadeca-4,8-diene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-(octadecanoylamino)pentacosa-4,8,12-triene-1-sulfonic acid
(E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]tetracos-4-ene-1-sulfonic acid
(E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]tricos-4-ene-1-sulfonic acid
2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyheptadecane-1-sulfonic acid
2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxyhenicosane-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
C41H74NO7P (723.5202623999999)
(4E,8E,12E)-3-hydroxy-2-(icosanoylamino)tricosa-4,8,12-triene-1-sulfonic acid
(E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]pentacos-4-ene-1-sulfonic acid
3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]tricosane-1-sulfonic acid
(4E,8E,12E)-2-(hexacosanoylamino)-3-hydroxyheptadeca-4,8,12-triene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (Z)-icos-11-enoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] dodecanoate
C41H74NO7P (723.5202623999999)
(4E,8E,12E)-3-hydroxy-2-(nonadecanoylamino)tetracosa-4,8,12-triene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate
C41H74NO7P (723.5202623999999)
(4E,8E,12E)-3-hydroxy-2-(tetracosanoylamino)nonadeca-4,8,12-triene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
C41H74NO7P (723.5202623999999)
3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]nonadecane-1-sulfonic acid
(4E,8E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]pentacosa-4,8-diene-1-sulfonic acid
(4E,8E)-2-[[(Z)-docos-13-enoyl]amino]-3-hydroxyhenicosa-4,8-diene-1-sulfonic acid
[3-[(Z)-heptadec-9-enoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[2-[(Z)-heptadec-9-enoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
2-[4-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
4-[3-nonanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-heptanoyloxy-2-[(Z)-hexacos-15-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(Z)-docos-13-enoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(Z)-nonadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-heptadecanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(Z)-icos-11-enoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-icosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(Z)-heptadec-9-enoyl]oxy-3-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-dodecanoyloxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-nonadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(Z)-octadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-octadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] tetradecanoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-hexadec-9-enoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
C41H74NO7P (723.5202623999999)
[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (Z)-tetradec-9-enoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
C41H74NO7P (723.5202623999999)
[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-octadec-9-enoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
C41H74NO7P (723.5202623999999)
[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] octadecanoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
C41H74NO7P (723.5202623999999)
[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] hexadecanoate
C41H74NO7P (723.5202623999999)
[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C41H74NO7P (723.5202623999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
C41H74NO7P (723.5202623999999)
(4Z,7Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicos-4-en-2-yl]hexadeca-4,7-dienamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,8-dien-2-yl]docos-11-enamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadeca-4,8-dien-2-yl]henicos-9-enamide
(10Z,12Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-4-en-2-yl]octadeca-10,12-dienamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytricosa-4,8-dien-2-yl]tridec-8-enamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,8-dien-2-yl]octadec-11-enamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetracosa-4,8-dien-2-yl]dodec-5-enamide
(14Z,16Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradec-4-en-2-yl]docosa-14,16-dienamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosa-4,8-dien-2-yl]hexadec-7-enamide
[(2S,3R)-3-hydroxy-2-[[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]amino]octadecyl] dihydrogen phosphate
C42H78NO6P (723.5566457999998)
4-[2-decanoyloxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-nonadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-docosanoyloxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-heptadecanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadeca-4,8-dien-2-yl]heptadec-9-enamide
(9E,12E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-4-en-2-yl]octadeca-9,12-dienamide
4-[2-[(E)-nonadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
C41H74NO7P (723.5202623999999)
(E)-N-[(2S,3R,4E,6E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,6-dien-2-yl]icos-11-enamide
(E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,8-dien-2-yl]icos-11-enamide
4-[3-[(E)-nonadec-9-enoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-dodecanoyloxy-3-[(E)-henicos-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-docos-11-enoyl]oxy-2-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate
C41H74NO7P (723.5202623999999)
4-[2-[(E)-docos-11-enoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-octadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-heptadecanoyloxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-dodecanoyloxy-2-[(E)-henicos-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-icos-11-enoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-octadec-11-enoyl]oxy-3-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-icosanoyloxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosa-4,8-dien-2-yl]hexadec-9-enamide
4-[2-[(E)-dodec-5-enoyl]oxy-3-henicosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-icos-11-enoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-dodec-5-enoyl]oxy-2-henicosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-icosanoyloxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(E)-N-[(2S,3R,4E,6E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,6-dien-2-yl]docos-13-enamide
4-[3-decanoyloxy-2-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-octadec-11-enoyl]oxy-2-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-dec-4-enoyl]oxy-3-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-heptadec-7-enoyl]oxy-3-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
(E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,8-dien-2-yl]docos-13-enamide
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
C41H74NO7P (723.5202623999999)
4-[2-docosanoyloxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-nonadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(E)-N-[(2S,3R,4E,14E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,14-dien-2-yl]octadec-9-enamide
(9E,12E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-8-en-2-yl]octadeca-9,12-dienamide
4-[3-octadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-dec-4-enoyl]oxy-2-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
(E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,8-dien-2-yl]octadec-9-enamide
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
C41H74NO7P (723.5202623999999)
4-[3-[(E)-heptadec-7-enoyl]oxy-2-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
2-[[(4E,8E,12E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]hexadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(4E,8E,12E)-2-[[(14Z,16Z)-docosa-14,16-dienoyl]amino]-3-hydroxytetradeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadecoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]dodeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]hexadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyicos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxydec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxydecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]hexadecoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]dodec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(4E,8E,12E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxytetradeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxytetradec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(4E,8E,12E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxynonadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]octoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(4E,8E,12E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]dodecoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(4E,8E,12E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytetradecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[[(4E,8E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxytetradeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C41H76N2O6P+ (723.5440705999999)
1-(1Z-Hexadecenyl)-2-arachidonoyl-sn-glycero-3-phosphoethanolamine
C41H74NO7P (723.5202623999999)
A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine in which the alkenyl and acyl groups are specified as (1Z)-hexadecenyl and arachidonoyl respectively.
1-(1Z-hexadecenyl)-2-arachidonoyl-sn-glycero-3-phosphoethanolamine zwitterion
C41H74NO7P (723.5202623999999)
A 1-(Z)-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine zwitterion in which the alk-1-enyl and acyl groups are specified as (1Z-hexadecenyl) and arachidonoyl respectively.
phosphatidylethanolamine P-36:4
C41H74NO7P (723.5202623999999)
A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine zwitterion in which the alk-1-enyl and acyl groups at positions 1 and 2 contain 36 carbon atoms in total with 4 additional double bonds.
MePC(32:5)
C41H74NO7P (723.5202623999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(36:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
dMePE(34:5)
C41H74NO7P (723.5202623999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved