Exact Mass: 720.4482

Exact Mass Matches: 720.4482

Found 69 metabolites which its exact mass value is equals to given mass value 720.4482, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PA(14:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H69O11P (720.4577)


PA(14:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/PGF1alpha), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/14:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H69O11P (720.4577)


PA(PGF1alpha/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/14:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H69O11P (720.4577)


PA(i-14:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/PGF1alpha), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/i-14:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H69O11P (720.4577)


PA(PGF1alpha/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/i-14:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-13:0/18:1(12Z)-O(9S,10R))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C37H69O11P (720.4577)


PG(a-13:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-13:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-O(9S,10R)/a-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methyldodecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C37H69O11P (720.4577)


PG(18:1(12Z)-O(9S,10R)/a-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-O(9S,10R)/a-13:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-13:0/18:1(9Z)-O(12,13))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methyldodecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C37H69O11P (720.4577)


PG(a-13:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-13:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(9Z)-O(12,13)/a-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methyldodecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C37H69O11P (720.4577)


PG(18:1(9Z)-O(12,13)/a-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(9Z)-O(12,13)/a-13:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-13:0/18:1(12Z)-O(9S,10R))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(11-methyldodecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C37H69O11P (720.4577)


PG(i-13:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-13:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-O(9S,10R)/i-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(11-methyldodecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C37H69O11P (720.4577)


PG(18:1(12Z)-O(9S,10R)/i-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-O(9S,10R)/i-13:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-13:0/18:1(9Z)-O(12,13))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(11-methyldodecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C37H69O11P (720.4577)


PG(i-13:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-13:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(9Z)-O(12,13)/i-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(11-methyldodecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C37H69O11P (720.4577)


PG(18:1(9Z)-O(12,13)/i-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(9Z)-O(12,13)/i-13:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

Excoecarin R2

Excoecarin R2

C40H64O11 (720.4448)


   

Excoecarin R1

Excoecarin R1

C40H64O11 (720.4448)


   
   

oleanolic acid 3-O-beta-D-xylopyranosyl-(1->2)-alpha-L-arabinopyranoside

oleanolic acid 3-O-beta-D-xylopyranosyl-(1->2)-alpha-L-arabinopyranoside

C40H64O11 (720.4448)


   

cumingianoside E

cumingianoside E

C40H64O11 (720.4448)


A triterpenoid saponin that is 24,25-epoxy-13,30-cyclodammarane-3,7,23-triol esterified to the corresponding acetate at position 3 and attached to a 6-O-acetyl-beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Isolated from Dysoxylum cumingianum it exhibits antileukemic activity.

   

3,23-O-butylidene-2alpha,3beta,19alpha,23-tetrahydroxy-urs-12-en-28-oic acid beta-D-glucopyranosyl ester|rubusside A

3,23-O-butylidene-2alpha,3beta,19alpha,23-tetrahydroxy-urs-12-en-28-oic acid beta-D-glucopyranosyl ester|rubusside A

C40H64O11 (720.4448)


   

cumingianoside D

cumingianoside D

C40H64O11 (720.4448)


A triterpenoid saponin that is 13,30-cyclodammar-25-ene-3,7,23,24-tetrol esterified to the corresponding acetate at position 3 and attached to a 6-O-acetyl-beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Isolated from Dysoxylum cumingianum, it exhibits antileukemic activity.

   
   

O19-Methyl,O7,O21-di-Ac-Bafilomycin A1

O19-Methyl,O7,O21-di-Ac-Bafilomycin A1

C40H64O11 (720.4448)


   

DTXSID40965341

DTXSID40965341

C40H64O11 (720.4448)


   

cumingianoside O

cumingianoside O

C40H64O11 (720.4448)


   

Vulgarsaponin B

Vulgarsaponin B

C40H64O11 (720.4448)


   

erythromycin C(1+)

erythromycin C(1+)

C36H66NO13+ (720.4534)


An erythromycin cation that is the conjugate acid of erythromycin C, arising from protonation of the tertiary amino group on the 3,4,6-trideoxy-3-(dimethylamino)-beta-D-xylo-hexopyranosyl residue; major species at pH 7.3.

   

PA(14:0/PGF1alpha)

PA(14:0/PGF1alpha)

C37H69O11P (720.4577)


   

PA(PGF1alpha/14:0)

PA(PGF1alpha/14:0)

C37H69O11P (720.4577)


   

PA(i-14:0/PGF1alpha)

PA(i-14:0/PGF1alpha)

C37H69O11P (720.4577)


   

PA(PGF1alpha/i-14:0)

PA(PGF1alpha/i-14:0)

C37H69O11P (720.4577)


   

PG(a-13:0/18:1(12Z)-O(9S,10R))

PG(a-13:0/18:1(12Z)-O(9S,10R))

C37H69O11P (720.4577)


   

PG(18:1(12Z)-O(9S,10R)/a-13:0)

PG(18:1(12Z)-O(9S,10R)/a-13:0)

C37H69O11P (720.4577)


   

PG(a-13:0/18:1(9Z)-O(12,13))

PG(a-13:0/18:1(9Z)-O(12,13))

C37H69O11P (720.4577)


   

PG(18:1(9Z)-O(12,13)/a-13:0)

PG(18:1(9Z)-O(12,13)/a-13:0)

C37H69O11P (720.4577)


   

PG(i-13:0/18:1(12Z)-O(9S,10R))

PG(i-13:0/18:1(12Z)-O(9S,10R))

C37H69O11P (720.4577)


   

PG(18:1(12Z)-O(9S,10R)/i-13:0)

PG(18:1(12Z)-O(9S,10R)/i-13:0)

C37H69O11P (720.4577)


   

PG(i-13:0/18:1(9Z)-O(12,13))

PG(i-13:0/18:1(9Z)-O(12,13))

C37H69O11P (720.4577)


   

PG(18:1(9Z)-O(12,13)/i-13:0)

PG(18:1(9Z)-O(12,13)/i-13:0)

C37H69O11P (720.4577)


   

O-[1-O-Palmitoyl-2-O-(11-carboxy-9-oxo-10-undecenoyl)-L-glycero-3-phospho]choline

O-[1-O-Palmitoyl-2-O-(11-carboxy-9-oxo-10-undecenoyl)-L-glycero-3-phospho]choline

C36H67NO11P+ (720.4452)


   

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C40H64O11 (720.4448)


   

3,4,5-trihydroxy-6-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

C40H64O11 (720.4448)


   

3,4,5-trihydroxy-6-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C40H64O11 (720.4448)


   

SQDG(28:2)

SQDG(10:1(1)_18:1)

C37H68O11S (720.4482)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   

PA 22:0/12:2;O3

PA 22:0/12:2;O3

C37H69O11P (720.4577)


   
   
   

PG O-18:0/13:3;O2

PG O-18:0/13:3;O2

C37H69O11P (720.4577)


   
   
   
   
   

(6-{[7-(acetyloxy)-15-[4-(3,3-dimethyloxiran-2-yl)-4-hydroxybutan-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

(6-{[7-(acetyloxy)-15-[4-(3,3-dimethyloxiran-2-yl)-4-hydroxybutan-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

C40H64O11 (720.4448)


   

2-[(2r,4as,5r,6s,8as)-2-[(1r)-2-({2-[(2s,4as,5r,6s,8as)-5-(carboxymethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoyl}oxy)-1-hydroxyethyl]-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[(2r,4as,5r,6s,8as)-2-[(1r)-2-({2-[(2s,4as,5r,6s,8as)-5-(carboxymethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoyl}oxy)-1-hydroxyethyl]-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C40H64O11 (720.4448)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 12,16-dihydroxy-4a,6a,6b,11,12,14b-hexamethyl-2-propyl-2h,4h,4bh,5h,6h,7h,8h,9h,10h,11h,12ah,14h,14ah,15h,16h,16ah-piceno[3,4-d][1,3]dioxine-8a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 12,16-dihydroxy-4a,6a,6b,11,12,14b-hexamethyl-2-propyl-2h,4h,4bh,5h,6h,7h,8h,9h,10h,11h,12ah,14h,14ah,15h,16h,16ah-piceno[3,4-d][1,3]dioxine-8a-carboxylate

C40H64O11 (720.4448)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4ar,4br,6ar,6bs,8as,11r,12r,12as,14ar,14br,16r,16ar)-12,16-dihydroxy-4a,6a,6b,11,12,14b-hexamethyl-2-propyl-2h,4h,4bh,5h,6h,7h,8h,9h,10h,11h,12ah,14h,14ah,15h,16h,16ah-piceno[3,4-d][1,3]dioxine-8a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4ar,4br,6ar,6bs,8as,11r,12r,12as,14ar,14br,16r,16ar)-12,16-dihydroxy-4a,6a,6b,11,12,14b-hexamethyl-2-propyl-2h,4h,4bh,5h,6h,7h,8h,9h,10h,11h,12ah,14h,14ah,15h,16h,16ah-piceno[3,4-d][1,3]dioxine-8a-carboxylate

C40H64O11 (720.4448)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-7-(acetyloxy)-15-[(2r,4s,5s)-4,5-dihydroxy-6-methylhept-6-en-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-7-(acetyloxy)-15-[(2r,4s,5s)-4,5-dihydroxy-6-methylhept-6-en-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C40H64O11 (720.4448)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-7-(acetyloxy)-15-[(2s)-1-[(2r,3r)-3-hydroxy-4,4-dimethyloxetan-2-yl]propan-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-7-(acetyloxy)-15-[(2s)-1-[(2r,3r)-3-hydroxy-4,4-dimethyloxetan-2-yl]propan-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C40H64O11 (720.4448)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-7-(acetyloxy)-15-[(2r,4s)-4-[(2r)-3,3-dimethyloxiran-2-yl]-4-hydroxybutan-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-7-(acetyloxy)-15-[(2r,4s)-4-[(2r)-3,3-dimethyloxiran-2-yl]-4-hydroxybutan-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C40H64O11 (720.4448)


   

2-[(2r,4as,5r,6s,8as)-5-{2-[(2r)-2-[(2r,4as,5r,6s,8as)-6-(1-carboxy-1-methylethyl)-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-2-yl]-2-hydroxyethoxy]-2-oxoethyl}-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[(2r,4as,5r,6s,8as)-5-{2-[(2r)-2-[(2r,4as,5r,6s,8as)-6-(1-carboxy-1-methylethyl)-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-2-yl]-2-hydroxyethoxy]-2-oxoethyl}-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C40H64O11 (720.4448)


   

(9z,15e)-11-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-1,7-dihydroxy-6,8,16,18-tetramethyl-5-[4-(3-methyl-3-propanoyloxiran-2-yl)pentan-2-yl]-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-3-one

(9z,15e)-11-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-1,7-dihydroxy-6,8,16,18-tetramethyl-5-[4-(3-methyl-3-propanoyloxiran-2-yl)pentan-2-yl]-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-3-one

C40H64O11 (720.4448)


   

(6-{[7-(acetyloxy)-15-[1-(3-hydroxy-4,4-dimethyloxetan-2-yl)propan-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

(6-{[7-(acetyloxy)-15-[1-(3-hydroxy-4,4-dimethyloxetan-2-yl)propan-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

C40H64O11 (720.4448)


   

2-[5-(2-{2-[6-(1-carboxy-1-methylethyl)-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-2-yl]-2-hydroxyethoxy}-2-oxoethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[5-(2-{2-[6-(1-carboxy-1-methylethyl)-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-2-yl]-2-hydroxyethoxy}-2-oxoethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C40H64O11 (720.4448)


   

(6-{[7-(acetyloxy)-15-(4,5-dihydroxy-6-methylhept-6-en-2-yl)-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

(6-{[7-(acetyloxy)-15-(4,5-dihydroxy-6-methylhept-6-en-2-yl)-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

C40H64O11 (720.4448)


   

2-[(2r,4as,5r,6s,8as)-2-[(1r)-2-({2-[(2r,4as,5r,6s,8as)-5-(carboxymethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoyl}oxy)-1-hydroxyethyl]-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[(2r,4as,5r,6s,8as)-2-[(1r)-2-({2-[(2r,4as,5r,6s,8as)-5-(carboxymethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoyl}oxy)-1-hydroxyethyl]-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C40H64O11 (720.4448)


   

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C40H64O11 (720.4448)


   

2-[5-(carboxymethyl)-2-[2-({2-[5-(carboxymethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoyl}oxy)-1-hydroxyethyl]-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[5-(carboxymethyl)-2-[2-({2-[5-(carboxymethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoyl}oxy)-1-hydroxyethyl]-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C40H64O11 (720.4448)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4ar,4br,6ar,6bs,8as,11r,12r,12as,14ar,14br,16r,16ar)-12,16-dihydroxy-4a,6a,6b,11,12,14b-hexamethyl-2-propyl-2h,4h,4bh,5h,6h,7h,8h,9h,10h,11h,12ah,14h,14ah,15h,16h,16ah-piceno[3,4-d][1,3]dioxine-8a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4ar,4br,6ar,6bs,8as,11r,12r,12as,14ar,14br,16r,16ar)-12,16-dihydroxy-4a,6a,6b,11,12,14b-hexamethyl-2-propyl-2h,4h,4bh,5h,6h,7h,8h,9h,10h,11h,12ah,14h,14ah,15h,16h,16ah-piceno[3,4-d][1,3]dioxine-8a-carboxylate

C40H64O11 (720.4448)


   

(4as,6as,6br,8ar,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C40H64O11 (720.4448)