Exact Mass: 704.3587069999999
Exact Mass Matches: 704.3587069999999
Found 43 metabolites which its exact mass value is equals to given mass value 704.3587069999999
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
PGP(a-13:0/i-12:0)
PGP(a-13:0/i-12:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(a-13:0/i-12:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.
PGP(i-12:0/a-13:0)
PGP(i-12:0/a-13:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-12:0/a-13:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.
PGP(i-12:0/i-13:0)
PGP(i-12:0/i-13:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-12:0/i-13:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.
PGP(i-13:0/i-12:0)
PGP(i-13:0/i-12:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-13:0/i-12:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.
butyl 3-O-acetyl-2-O-butanoyl-3,4,4-tri(O-2-methylpropanoyl)neohesperidoside
cyclo{-(betaS)-Nalpha-(N,N-dimethyl-L-tryptophyl-L-prolyl)-beta-oxy-L-phenylalanyl-L-leucyl-psi[NH-CH=CH-(4,1-phenylene)]-}|hemsine C
12-Demethylvobtusine|Demethylvobtusin|ent-6beta,21;6beta,21-diepoxy-2,17-dihydroxy-2,3-didehydro-(7betaC4,3beta)-3,4-dihydro-2H-spiro[aspidospermidine-7,5-pyrido[1,2,3:1,2,3]aspidospermidine]-3-carboxylic acid methyl ester|O-12-Demethyl-vobtusin|O-demethyl-vobtusine
C42H48N4O6 (704.3573667999999)
Butyl 3-O-acetyl-2-O-butanoyl-4,6,4-tri-O-(2-methylpropanoyl)-neohesperidoside
Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)samarium(III)
C33H60O6Sm (704.3587069999999)
[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
C34H57O13P (704.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
C34H57O13P (704.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
C34H57O13P (704.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
C34H57O13P (704.3536601999999)
12-({11-hydroxy-4,7,15,18-tetramethyl-3,5,14,16-tetraoxapentacyclo[11.7.0.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]icosa-1(13),2(10),11-trien-12-yl}methyl)-4,6,15,18-tetramethyl-3,5,14,16-tetraoxapentacyclo[11.7.0.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]icosa-1,10,12-trien-11-ol
36',37'-dimethyl (1's,12'r,13'e,30'r,36'r,37'r)-13'-ethylidene-3,8',26'-trimethyl-22'-oxa-8',15',26',33'-tetraazaspiro[oxirane-2,31'-undecacyclo[28.5.1.1¹²,¹⁸.0¹,²⁷.0²,²⁵.0⁴,²³.0⁵,²¹.0⁷,¹⁹.0⁹,¹⁵.0⁹,¹⁸.0²⁷,³³]heptatriacontane]-2',4'(23'),5'(21'),6',19',24'-hexaene-36',37'-dicarboxylate
C42H48N4O6 (704.3573667999999)
(4r,6r,8r,15r,18r,19r)-12-{[(4r,7r,8r,15r,18r,19r)-11-hydroxy-4,7,15,18-tetramethyl-3,5,14,16-tetraoxapentacyclo[11.7.0.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]icosa-1(13),2(10),11-trien-12-yl]methyl}-4,6,15,18-tetramethyl-3,5,14,16-tetraoxapentacyclo[11.7.0.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]icosa-1,10,12-trien-11-ol
n-[(3s,7s,10e)-5,8-dihydroxy-7-(2-methylpropyl)-3-phenyl-2-oxa-6,9-diazabicyclo[10.2.2]hexadeca-1(14),5,8,10,12,15-hexaen-4-yl]-1-[2-(dimethylamino)-3-(1h-indol-3-yl)propanoyl]pyrrolidine-2-carboximidic acid
(2r,3r,4r,5s,6s)-4-(acetyloxy)-2-{[(2r,3r,4s,5s,6r)-2-butoxy-4-hydroxy-5-[(2-methylpropanoyl)oxy]-6-{[(2-methylpropanoyl)oxy]methyl}oxan-3-yl]oxy}-6-methyl-5-[(2-methylpropanoyl)oxy]oxan-3-yl butanoate
(1s,3br,4r,5as,7r,9s,9as,9br,11as)-4,9-bis(acetyloxy)-1-(7,7-dimethyl-5,6-dioxooxepan-3-yl)-3b,6,6,9a,11a-pentamethyl-2-oxo-1h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl benzoate
4-(acetyloxy)-2-({2-butoxy-4-hydroxy-5-[(2-methylpropanoyl)oxy]-6-{[(2-methylpropanoyl)oxy]methyl}oxan-3-yl}oxy)-6-methyl-5-[(2-methylpropanoyl)oxy]oxan-3-yl butanoate
(2e,4e,6e)-n-[(1s)-1-{[(3s,7s,13s,16s,19s)-15-hydroxy-13,16,17-trimethyl-2,6,12,18-tetraoxo-5-oxa-1,11,14,17-tetraazatricyclo[17.3.0.0⁷,¹¹]docos-14-en-3-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl]octa-2,4,6-trienimidic acid
C37H48N6O8 (704.3533448000001)
36',37'-dimethyl (13'z)-13'-ethylidene-3,8',26'-trimethyl-22'-oxa-8',15',26',33'-tetraazaspiro[oxirane-2,31'-undecacyclo[28.5.1.1¹²,¹⁸.0¹,²⁷.0²,²⁵.0⁴,²³.0⁵,²¹.0⁷,¹⁹.0⁹,¹⁵.0⁹,¹⁸.0²⁸,³³]heptatriacontane]-2',4'(23'),5'(21'),6',19',24'-hexaene-36',37'-dicarboxylate
C42H48N4O6 (704.3573667999999)