Exact Mass: 702.4554036

Exact Mass Matches: 702.4554036

Found 73 metabolites which its exact mass value is equals to given mass value 702.4554036, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PA(14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H67O10P (702.4471612)


PA(14:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H67O10P (702.4471612)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(hexadec-1-en-1-yloxy)propoxy]phosphonic acid

C37H67O10P (702.4471612)


PA(P-16:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/5-iso PGF2VI), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/P-16:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(hexadec-1-en-1-yloxy)propoxy]phosphonic acid

C37H67O10P (702.4471612)


PA(5-iso PGF2VI/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/P-16:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H67O10P (702.4471612)


PA(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H67O10P (702.4471612)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Phlegmanol B-acetat

Phlegmanol B-acetat

C44H62O7 (702.4495302)


   

PG(13:0/18:3(6Z,9Z,12Z))

1-tridecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H67O10P (702.4471612)


   

PG(13:0/18:3(9Z,12Z,15Z))

1-tridecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H67O10P (702.4471612)


   

PG(14:1(9Z)/17:2(9Z,12Z))

1-(9Z-tetradecenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H67O10P (702.4471612)


   

PG(17:2(9Z,12Z)/14:1(9Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H67O10P (702.4471612)


   

PG(18:3(6Z,9Z,12Z)/13:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H67O10P (702.4471612)


   

PG(18:3(9Z,12Z,15Z)/13:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H67O10P (702.4471612)


   

PG 31:3

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H67O10P (702.4471612)


   

PA(14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C37H67O10P (702.4471612)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0)

C37H67O10P (702.4471612)


   

PA(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C37H67O10P (702.4471612)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0)

C37H67O10P (702.4471612)


   

PA(P-16:0/5-iso PGF2VI)

PA(P-16:0/5-iso PGF2VI)

C37H67O10P (702.4471612)


   

PA(5-iso PGF2VI/P-16:0)

PA(5-iso PGF2VI/P-16:0)

C37H67O10P (702.4471612)


   

Veraguamide D

Veraguamide D

C38H62N4O8 (702.4567412)


A natural product found in Symploca hydnoides.

   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C37H67O10P (702.4471612)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C37H67O10P (702.4471612)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C37H67O10P (702.4471612)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C37H67O10P (702.4471612)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C37H67O10P (702.4471612)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C37H67O10P (702.4471612)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C37H67O10P (702.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C37H67O10P (702.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C37H67O10P (702.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C37H67O10P (702.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C37H67O10P (702.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C37H67O10P (702.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C37H67O10P (702.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C37H67O10P (702.4471612)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C37H67O10P (702.4471612)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C37H67O10P (702.4471612)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C37H67O10P (702.4471612)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C37H67O10P (702.4471612)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C37H67O10P (702.4471612)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C37H67O10P (702.4471612)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C37H67O10P (702.4471612)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C37H67O10P (702.4471612)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C37H67O10P (702.4471612)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C37H67O10P (702.4471612)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C37H67O10P (702.4471612)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C37H67O10P (702.4471612)


   

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H65NO7P+ (702.4498409999999)


   
   
   
   
   

PA P-16:1/22:6 or PA O-16:2/22:6

PA P-16:1/22:6 or PA O-16:2/22:6

C41H67O7P (702.4624162)


   
   

PA P-38:7 or PA O-38:8

PA P-38:7 or PA O-38:8

C41H67O7P (702.4624162)


   
   
   
   
   
   
   
   
   
   
   
   
   

(3s,6r,7s,10s,13s,16s,21as)-3,16-bis[(2s)-butan-2-yl]-8-hydroxy-10,13-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6r,7s,10s,13s,16s,21as)-3,16-bis[(2s)-butan-2-yl]-8-hydroxy-10,13-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C38H62N4O8 (702.4567412)


   

(3s,6r,7s,10s,13s,16s,21as)-3,13-bis[(2s)-butan-2-yl]-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6r,7s,10s,13s,16s,21as)-3,13-bis[(2s)-butan-2-yl]-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C38H62N4O8 (702.4567412)


   

(3s,6r,7s,10s,13r,16s,21as)-13-[(2r)-butan-2-yl]-3-[(2s)-butan-2-yl]-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6r,7s,10s,13r,16s,21as)-13-[(2r)-butan-2-yl]-3-[(2s)-butan-2-yl]-8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C38H62N4O8 (702.4567412)


   

8-hydroxy-10,13-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3,16-bis(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

8-hydroxy-10,13-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3,16-bis(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C38H62N4O8 (702.4567412)


   

8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3,13-bis(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

8-hydroxy-10,16-diisopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3,13-bis(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C38H62N4O8 (702.4567412)