Exact Mass: 690.5199

Exact Mass Matches: 690.5199

Found 77 metabolites which its exact mass value is equals to given mass value 690.5199, within given mass tolerance error 0.0002 dalton. Try search metabolite list with more accurate mass tolerance error 4.0E-5 dalton.

PA(15:0/20:0)

[(2R)-2-(icosanoyloxy)-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(15:0/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/20:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/15:0)

[(2R)-3-(icosanoyloxy)-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(20:0/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/15:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(21:0/14:0)

[(2R)-3-(henicosanoyloxy)-2-(tetradecanoyloxy)propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(21:0/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/14:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:0/13:0)

[(2R)-3-(docosanoyloxy)-2-(tridecanoyloxy)propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(22:0/13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/13:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of tridecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(10:0/a-25:0)

[(2R)-3-(decanoyloxy)-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(10:0/a-25:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/a-25:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of anteisopentacosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/a-15:0)

[(2R)-3-(icosanoyloxy)-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(20:0/a-15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/a-15:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of anteisopentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/i-15:0)

[(2R)-3-(icosanoyloxy)-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(20:0/i-15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/i-15:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of isopentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(21:0/i-14:0)

[(2R)-3-(henicosanoyloxy)-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(21:0/i-14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/i-14:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of isotetradecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:0/a-13:0)

[(2R)-3-(docosanoyloxy)-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(22:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/a-13:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:0/i-13:0)

[(2R)-3-(docosanoyloxy)-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(22:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/i-13:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-13:0/i-22:0)

[(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(20-methylhenicosanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(a-13:0/i-22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-22:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isodocosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-21:0/14:0)

[(2R)-3-[(18-methylicosanoyl)oxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(a-21:0/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/14:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-21:0/i-14:0)

[(2R)-3-[(18-methylicosanoyl)oxy]-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(a-21:0/i-14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/i-14:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of isotetradecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-25:0/10:0)

[(2R)-2-(decanoyloxy)-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(a-25:0/10:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-25:0/10:0), in particular, consists of one chain of anteisopentacosanoic acid at the C-1 position and one chain of capric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-13:0/i-22:0)

[(2R)-3-[(11-methyldodecanoyl)oxy]-2-[(20-methylhenicosanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(i-13:0/i-22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-22:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isodocosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-20:0/15:0)

[(2R)-3-[(18-methylnonadecanoyl)oxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(i-20:0/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/15:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-20:0/a-15:0)

[(2R)-3-[(18-methylnonadecanoyl)oxy]-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(i-20:0/a-15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/a-15:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of anteisopentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-20:0/i-15:0)

[(2R)-3-[(18-methylnonadecanoyl)oxy]-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(i-20:0/i-15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/i-15:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of isopentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-21:0/14:0)

[(2R)-3-[(19-methylicosanoyl)oxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(i-21:0/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/14:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-21:0/i-14:0)

[(2R)-3-[(19-methylicosanoyl)oxy]-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(i-21:0/i-14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/i-14:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of isotetradecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-22:0/13:0)

[(2R)-3-[(20-methylhenicosanoyl)oxy]-2-(tridecanoyloxy)propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(i-22:0/13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-22:0/13:0), in particular, consists of one chain of isodocosanoic acid at the C-1 position and one chain of tridecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-22:0/a-13:0)

[(2R)-2-[(10-methyldodecanoyl)oxy]-3-[(20-methylhenicosanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(i-22:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-22:0/a-13:0), in particular, consists of one chain of isodocosanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-22:0/i-13:0)

[(2R)-2-[(11-methyldodecanoyl)oxy]-3-[(20-methylhenicosanoyl)oxy]propoxy]phosphonic acid

C38H75O8P (690.5199)


PA(i-22:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-22:0/i-13:0), in particular, consists of one chain of isodocosanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(13:0/22:0)

1-tridecanoyl-2-docosanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA(14:0/21:0)

1-tetradecanoyl-2-heneicosanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA(15:0/20:0)

1-pentadecanoyl-2-eicosanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA(18:0/17:0)

1-octadecanoyl-2-heptadecanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA(20:0/15:0)

1-eicosanoyl-2-pentadecanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA(22:0/13:0)

1-docosanoyl-2-tridecanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA(21:0/14:0)

1-heneicosanoyl-2-tetradecanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA(17:0/18:0)

1-heptadecanoyl-2-octadecanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA(19:0/16:0)

1-nonadecanoyl-2-hexadecanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA(16:0/19:0)

1-hexadecanoyl-2-nonadecanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PA 35:0

1-heneicosanoyl-2-tetradecanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

PMeOH 14:0_20:0

PMeOH 14:0_20:0

C38H75O8P (690.5199)


   

PMeOH 13:0_21:0

PMeOH 13:0_21:0

C38H75O8P (690.5199)


   

PEtOH 13:0_20:0

PEtOH 13:0_20:0

C38H75O8P (690.5199)


   

PEtOH 14:0_19:0

PEtOH 14:0_19:0

C38H75O8P (690.5199)


   

PEtOH 12:0_21:0

PEtOH 12:0_21:0

C38H75O8P (690.5199)


   

PMeOH 17:0_17:0

PMeOH 17:0_17:0

C38H75O8P (690.5199)


   

PEtOH 16:0_17:0

PEtOH 16:0_17:0

C38H75O8P (690.5199)


   

PMeOH 15:0_19:0

PMeOH 15:0_19:0

C38H75O8P (690.5199)


   

PMeOH 16:0_18:0

PMeOH 16:0_18:0

C38H75O8P (690.5199)


   

PMeOH 12:0_22:0

PMeOH 12:0_22:0

C38H75O8P (690.5199)


   

PEtOH 15:0_18:0

PEtOH 15:0_18:0

C38H75O8P (690.5199)


   

(1-Octanoyloxy-3-phosphonooxypropan-2-yl) heptacosanoate

(1-Octanoyloxy-3-phosphonooxypropan-2-yl) heptacosanoate

C38H75O8P (690.5199)


   

(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate

(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate

C38H75O8P (690.5199)


   

(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) docosanoate

(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) docosanoate

C38H75O8P (690.5199)


   

(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) henicosanoate

(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) henicosanoate

C38H75O8P (690.5199)


   

(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) icosanoate

(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) icosanoate

C38H75O8P (690.5199)


   

(1-Heptadecanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate

(1-Heptadecanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate

C38H75O8P (690.5199)


   

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) nonadecanoate

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) nonadecanoate

C38H75O8P (690.5199)


   

(1-Decanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate

(1-Decanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate

C38H75O8P (690.5199)


   

(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) tetracosanoate

(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) tetracosanoate

C38H75O8P (690.5199)


   

(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate

(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate

C38H75O8P (690.5199)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] tetracosanoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] tetracosanoate

C38H75O8P (690.5199)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] tricosanoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] tricosanoate

C38H75O8P (690.5199)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] tetracosanoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] tetracosanoate

C38H75O8P (690.5199)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] tricosanoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] tricosanoate

C38H75O8P (690.5199)


   

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] pentacosanoate

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] pentacosanoate

C38H75O8P (690.5199)


   

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] pentacosanoate

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] pentacosanoate

C38H75O8P (690.5199)


   

1-heptadecanoyl-2-octadecanoyl-glycero-3-phosphate

1-heptadecanoyl-2-octadecanoyl-glycero-3-phosphate

C38H75O8P (690.5199)


   

1-heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate

1-heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate

C38H75O8P (690.5199)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the phosphatidyl acyl groups at postions 1 and 2 are specified as heptadecanoyl and stearoyl respectively.

   

PEt(33:0)

PEt(16:0_17:0)

C38H75O8P (690.5199)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(34:0)

PMe(18:0_16:0)

C38H75O8P (690.5199)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved