Exact Mass: 688.5026258

Exact Mass Matches: 688.5026258

Found 215 metabolites which its exact mass value is equals to given mass value 688.5026258, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C45H68O5 (688.5066478)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C45H68O5 (688.5066478)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

(2S)-3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:4n6/0:0/22:6n3)

(2R)-2-Hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid

C45H68O5 (688.5066478)


DG(20:4n6/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n6/0:0/22:6n3), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The arachidonic acid moiety is derived from animal fats and eggs, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(22:5n6/0:0/20:5n3)

(2S)-2-Hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propyl (4Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoic acid

C45H68O5 (688.5066478)


DG(22:5n6/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:5n6/0:0/20:5n3), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:4n3/0:0/22:6n3)

(2R)-2-Hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid

C45H68O5 (688.5066478)


DG(20:4n3/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n3/0:0/22:6n3), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The eicosatetraenoic acid moiety is derived from fish oils, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:5n3/0:0/22:5n3)

(2S)-2-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


DG(20:5n3/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:5n3/0:0/22:5n3), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

PA(20:1(11Z)/15:0)

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H73O8P (688.5042788)


PA(20:1(11Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/15:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

DG(20:5/22:5/0:0)[iso2]

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

C45H68O5 (688.5066478)


   

DG(20:4/22:6/0:0)[iso2]

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C45H68O5 (688.5066478)


   

Diglyceride

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

C45H68O5 (688.5066478)


   

PA(13:0/22:1(11Z))

1-tridecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(14:1(9Z)/21:0)

1-(9Z-tetradecenoyl)-2-heneicosanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(15:0/20:1(11Z))

1-pentadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(15:1(9Z)/20:0)

1-(9Z-pentadecenoyl)-2-eicosanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(16:0/19:1(9Z))

1-hexadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(16:1(9Z)/19:0)

1-(9Z-hexadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(17:1(9Z)/18:0)

1-(9Z-heptadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(18:0/17:1(9Z))

1-octadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(18:1(9Z)/17:0)

1-(9Z-octadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(19:0/16:1(9Z))

1-nonadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(19:1(9Z)/16:0)

1-(9Z-nonadecenoyl)-2-hexadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(20:0/15:1(9Z))

1-eicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(20:1(11Z)/15:0)

1-(11Z-eicosenoyl)-2-pentadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(21:0/14:1(9Z))

1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(22:1(11Z)/13:0)

1-(11Z-docosenoyl)-2-tridecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

PA(17:0/18:1(9Z))

1-heptadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

DG 42:10

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

C45H68O5 (688.5066478)


   

PA 35:1

1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   
   

HYDROGEN HEXABROMOPLATINATE(IV) HYDRATE

HYDROGEN HEXABROMOPLATINATE(IV) HYDRATE

Br6H4OPt (688.5010144)


   
   

Monogalactosyl-diacylglycerol

Monogalactosyl-diacylglycerol

C38H72O10 (688.5125212)


   

1-Oleoyl-2-heptadecanoyl-sn-glycero-3-phosphate

1-Oleoyl-2-heptadecanoyl-sn-glycero-3-phosphate

C38H73O8P (688.5042788)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as oleoyl and heptadecanoyl respectively.

   

1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)

1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)

C38H73O8P-2 (688.5042788)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C45H68O5 (688.5066478)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C45H68O5 (688.5066478)


   

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C45H68O5 (688.5066478)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C45H68O5 (688.5066478)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate

C38H72O10 (688.5125212)


   

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentacosanoate

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentacosanoate

C38H72O10 (688.5125212)


   

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tricosanoate

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tricosanoate

C38H72O10 (688.5125212)


   

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptacosanoate

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptacosanoate

C38H72O10 (688.5125212)


   

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexacosanoate

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexacosanoate

C38H72O10 (688.5125212)


   

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetracosanoate

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetracosanoate

C38H72O10 (688.5125212)


   

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] henicosanoate

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] henicosanoate

C38H72O10 (688.5125212)


   

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate

C38H72O10 (688.5125212)


   

[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

C38H72O10 (688.5125212)


   

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

C38H72O10 (688.5125212)


   

[1-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] octadecanoate

[1-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] octadecanoate

C38H72O10 (688.5125212)


   

[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptadecanoate

[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptadecanoate

C38H72O10 (688.5125212)


   

[1-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

[1-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

C38H72O10 (688.5125212)


   

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

C38H73O8P (688.5042788)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C38H73O8P (688.5042788)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

C38H73O8P (688.5042788)


   

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] henicosanoate

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] henicosanoate

C38H73O8P (688.5042788)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C38H73O8P (688.5042788)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate

C38H73O8P (688.5042788)


   

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] docosanoate

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] docosanoate

C38H73O8P (688.5042788)


   

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

C38H73O8P (688.5042788)


   

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-octadec-9-enoate

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-octadec-9-enoate

C38H73O8P (688.5042788)


   

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-docos-13-enoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-docos-13-enoate

C38H73O8P (688.5042788)


   

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

C38H73O8P (688.5042788)


   

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


   

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (Z)-tetracos-13-enoate

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (Z)-tetracos-13-enoate

C38H73O8P (688.5042788)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] octadecanoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] octadecanoate

C38H72O10 (688.5125212)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

C38H73O8P (688.5042788)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C38H73O8P (688.5042788)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C38H73O8P (688.5042788)


   

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


   

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

C38H72O10 (688.5125212)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

C38H73O8P (688.5042788)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

C38H72O10 (688.5125212)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] nonadecanoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] nonadecanoate

C38H72O10 (688.5125212)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] henicosanoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] henicosanoate

C38H73O8P (688.5042788)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C38H73O8P (688.5042788)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C38H73O8P (688.5042788)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-tetracos-15-enoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-tetracos-15-enoate

C38H73O8P (688.5042788)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

C38H73O8P (688.5042788)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

C38H73O8P (688.5042788)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

C38H73O8P (688.5042788)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

C38H72O10 (688.5125212)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-13-enoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-13-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

C38H73O8P (688.5042788)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-11-enoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-icos-11-enoate

C38H73O8P (688.5042788)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] octadecanoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] octadecanoate

C38H72O10 (688.5125212)


   

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

C38H73O8P (688.5042788)


   

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H68O5 (688.5066478)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (E)-docos-13-enoate

C38H73O8P (688.5042788)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

C45H68O5 (688.5066478)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C38H73O8P (688.5042788)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

C38H73O8P (688.5042788)


   

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate

[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate

C38H72O10 (688.5125212)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C38H73O8P (688.5042788)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] henicosanoate

C38H73O8P (688.5042788)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

C38H73O8P (688.5042788)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

C38H72O10 (688.5125212)


   

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H68O5 (688.5066478)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-tetracos-15-enoate

C38H73O8P (688.5042788)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C45H68O5 (688.5066478)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

C38H73O8P (688.5042788)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

C38H73O8P (688.5042788)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

C45H68O5 (688.5066478)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (E)-docos-13-enoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (E)-docos-13-enoate

C38H73O8P (688.5042788)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

C38H72O10 (688.5125212)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptadecanoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptadecanoate

C38H72O10 (688.5125212)


   

1-(11Z-eicosenoyl)-2-pentadecanoyl-glycero-3-phosphate

1-(11Z-eicosenoyl)-2-pentadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

C45H68O5 (688.5066478)


   

DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

DG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

C45H68O5 (688.5066478)


   

DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

DG(20:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

C45H68O5 (688.5066478)


   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

DG(20:5(5Z,8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

C45H68O5 (688.5066478)


   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

C45H68O5 (688.5066478)


   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

C45H68O5 (688.5066478)


   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

C45H68O5 (688.5066478)


   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

C45H68O5 (688.5066478)


   

1-Arachidonoyl-3-docosahexaenoyl-sn-glycerol

1-Arachidonoyl-3-docosahexaenoyl-sn-glycerol

C45H68O5 (688.5066478)


   

1-Osbondoyl-3-eicosapentaenoyl-sn-glycerol

1-Osbondoyl-3-eicosapentaenoyl-sn-glycerol

C45H68O5 (688.5066478)


   

1-Eicsoatetraenoyl-3-docosahexaenoyl-sn-glycerol

1-Eicsoatetraenoyl-3-docosahexaenoyl-sn-glycerol

C45H68O5 (688.5066478)


   

1-Eicosapentaenoyl-3-docosapentaenoyl-sn-glycerol

1-Eicosapentaenoyl-3-docosapentaenoyl-sn-glycerol

C45H68O5 (688.5066478)


   

1-(9Z-pentadecenoyl)-2-eicosanoyl-glycero-3-phosphate

1-(9Z-pentadecenoyl)-2-eicosanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-tridecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

1-tridecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)

1-Heptadecanoyl-2-stearoyl-sn-glycero-3-phosphate(2-)

C38H73O8P (688.5042788)


A 1,2-diacyl-sn-glycerol 3-phosphate(2-) in which the phosphatidyl acyl groups at postions 1 and 2 are specified as heptadecanoyl and stearoyl respectively.

   

1-(9Z-hexadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

1-(9Z-hexadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-(9Z-heptadecenoyl)-2-octadecanoyl-glycero-3-phosphate

1-(9Z-heptadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-octadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

1-octadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-(9Z-nonadecenoyl)-2-hexadecanoyl-glycero-3-phosphate

1-(9Z-nonadecenoyl)-2-hexadecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-(9Z-tetradecenoyl)-2-heneicosanoyl-glycero-3-phosphate

1-(9Z-tetradecenoyl)-2-heneicosanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-hexadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

1-hexadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-nonadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

1-nonadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-eicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

1-eicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-heptadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

1-heptadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-pentadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

1-pentadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C38H73O8P (688.5042788)


   

1-(11Z-docosenoyl)-2-tridecanoyl-glycero-3-phosphate

1-(11Z-docosenoyl)-2-tridecanoyl-glycero-3-phosphate

C38H73O8P (688.5042788)


   

diacylglycerol 42:10

diacylglycerol 42:10

C45H68O5 (688.5066478)


A diglyceride in which the two acyl groups contain a total of 42 carbons and 10 double bonds.

   

1-heptadecanoyl-2-oleoyl-sn-glycero-3-phosphate

1-heptadecanoyl-2-oleoyl-sn-glycero-3-phosphate

C38H73O8P (688.5042788)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as heptadecanoyl and oleoyl respectively.

   

TG(42:10)

TG(20:4(1)_10:2_12:4)

C45H68O5 (688.5066478)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(33:1)

PEt(17:1_16:0)

C38H73O8P (688.5042788)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(34:1)

PMe(16:0_18:1)

C38H73O8P (688.5042788)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(29:0)

MGDG(15:0_14:0)

C38H72O10 (688.5125212)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved