Exact Mass: 676.3856

Exact Mass Matches: 676.3856

Found 53 metabolites which its exact mass value is equals to given mass value 676.3856, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Actein

[2-Hydroxy-1,4,6,12,17,17-hexamethyl-18-(3,4,5-trihydroxyoxan-2-yl)oxyspiro[3,6-dioxabicyclo[3.1.0]hexane-4,8-9-oxahexacyclo[11.9.0.01,21.04,12.05,10.016,21]docosane]-3-yl] acetate

C37H56O11 (676.3822)


   

PA(13:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O11P (676.3951)


PA(13:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/5-iso PGF2VI), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/13:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O11P (676.3951)


PA(5-iso PGF2VI/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/13:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O11P (676.3951)


PA(a-13:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/5-iso PGF2VI), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/a-13:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O11P (676.3951)


PA(5-iso PGF2VI/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/a-13:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O11P (676.3951)


PA(i-13:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/5-iso PGF2VI), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/i-13:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O11P (676.3951)


PA(5-iso PGF2VI/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/i-13:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Cimiracemoside G

Cimiracemoside G

C37H56O11 (676.3822)


   

Actaeaepoxide 3-O-beta-D-xylopyranoside

Actaeaepoxide 3-O-beta-D-xylopyranoside

C37H56O11 (676.3822)


   

Actein

[(1S,1R,2S,3R,4R,4R,5R,5R,6R,10S,12S,13S,16R,18S,21R)-2-hydroxy-1,4,6,12,17,17-hexamethyl-18-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyspiro[3,6-dioxabicyclo[3.1.0]hexane-4,8-9-oxahexacyclo[11.9.0.01,21.04,12.05,10.016,21]docosane]-3-yl] acetate

C37H56O11 (676.3822)


Actein is a triterpenoid. It has a role as a metabolite. Actein is a natural product found in Actaea elata, Actaea cimicifuga, and other organisms with data available. See also: Black Cohosh (part of). A natural product found in Actaea racemosa.

   

(23R,24R)-16beta,23;16alpha,24-diepoxy-12beta-acetoxy-cycloart-7-en-3beta,15alpha,25-triol 3-O-beta-D-xylopyranoside

(23R,24R)-16beta,23;16alpha,24-diepoxy-12beta-acetoxy-cycloart-7-en-3beta,15alpha,25-triol 3-O-beta-D-xylopyranoside

C37H56O11 (676.3822)


   

3beta-O-(beta-D-glucuronopyranosyl)-olean-12-ene-28,29-dioic acid 29-methyl ester|coryternic acid 3-O-beta-D-glucuronopyranoside

3beta-O-(beta-D-glucuronopyranosyl)-olean-12-ene-28,29-dioic acid 29-methyl ester|coryternic acid 3-O-beta-D-glucuronopyranoside

C37H56O11 (676.3822)


   

27-Deoxyactein

27-Deoxyactein

C37H56O11 (676.3822)


   

Rapacuronium Bromide

Rapacuronium Bromide

C37H61BrN2O4 (676.3814)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant Rapacuronium bromide (Org 9487), a non-depolarizing neuromuscular blocker, is an allosteric modulator of muscarinic acetylcholine receptor (mAChR)[1].

   

Cimiracemoside A

Cimiracemoside A

C37H56O11 (676.3822)


   

PA(13:0/5-iso PGF2VI)

PA(13:0/5-iso PGF2VI)

C34H61O11P (676.3951)


   

PA(5-iso PGF2VI/13:0)

PA(5-iso PGF2VI/13:0)

C34H61O11P (676.3951)


   

PA(a-13:0/5-iso PGF2VI)

PA(a-13:0/5-iso PGF2VI)

C34H61O11P (676.3951)


   

PA(5-iso PGF2VI/a-13:0)

PA(5-iso PGF2VI/a-13:0)

C34H61O11P (676.3951)


   

PA(i-13:0/5-iso PGF2VI)

PA(i-13:0/5-iso PGF2VI)

C34H61O11P (676.3951)


   

PA(5-iso PGF2VI/i-13:0)

PA(5-iso PGF2VI/i-13:0)

C34H61O11P (676.3951)


   

(5R)-3-O-[(2E)-3-carboxyprop-2-enoyl]-2,4-dideoxy-1-C-{(2S,3R,4S)-3-hydroxy-4-[(2R,3S,4R,6R,9S,10S,11R,12R,14R)-10-hydroxy-3-methoxy-7,9,11,13,15-pentamethyl-16-oxooxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl}-4,5-dimethyl-beta-L-erythro-pentopyranose

(5R)-3-O-[(2E)-3-carboxyprop-2-enoyl]-2,4-dideoxy-1-C-{(2S,3R,4S)-3-hydroxy-4-[(2R,3S,4R,6R,9S,10S,11R,12R,14R)-10-hydroxy-3-methoxy-7,9,11,13,15-pentamethyl-16-oxooxacyclohexadeca-4,6,12,14-tetraen-2-yl]pentan-2-yl}-4,5-dimethyl-beta-L-erythro-pentopyranose

C37H56O11 (676.3822)


   

N-[5-[3-[3-(ethylamino)-6-ethylimino-2,7-dimethylxanthen-9-yl]propanoylamino]pentyl]-5-(2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl)pentanamide

N-[5-[3-[3-(ethylamino)-6-ethylimino-2,7-dimethylxanthen-9-yl]propanoylamino]pentyl]-5-(2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl)pentanamide

C37H52N6O4S (676.3771)


   

Hygrolidin

Hygrolidin

C37H56O11 (676.3822)


A macrolide consisting resulting from the formal lactonisation of the carboxy group of (2E,4E,6R,7S,8S,10E,12E,14S,15R,16S,17R,18S)-18-[(2R,4R,5S,6R)-4-{[(2E)-3-carboxyprop-2-enoyl]oxy}-2-hydroxy-5,6-dimethyltetrahydro-2H-pyran-2-yl]-7,15,17-trihydroxy-14-methoxy-2,4,6,8,10,16-hexamethylnonadeca-2,4,10,12-tetraenoic acid with the hydroxy group at position 15. It is active against SV40 tumour cells, and inhibits the growth of solid tumour-derived cell lines such as DLD-1 human colon cancer cells with increased cells in G1 and S phases.

   

Cimiracemoside F

Cimiracemoside F

C37H56O11 (676.3822)


A natural product found in Actaea racemosa.

   
   
   

PA 20:0/11:3;O3

PA 20:0/11:3;O3

C34H61O11P (676.3951)


   
   
   

PG P-16:0/12:3;O2

PG P-16:0/12:3;O2

C34H61O11P (676.3951)


   

PG P-16:1/12:2;O2

PG P-16:1/12:2;O2

C34H61O11P (676.3951)


   

PG P-20:0/8:3;O2

PG P-20:0/8:3;O2

C34H61O11P (676.3951)


   

PG P-20:1/8:2;O2

PG P-20:1/8:2;O2

C34H61O11P (676.3951)


   
   
   
   
   
   

(1s,1'r,2r,3'r,4s,4'r,5r,5'r,6'r,10's,12's,13's,16'r,18's,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

(1s,1'r,2r,3'r,4s,4'r,5r,5'r,6'r,10's,12's,13's,16'r,18's,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

C37H56O11 (676.3822)


   

(3as,7as)-1-[(2s)-2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-phenylpropanoyl]-6-hydroxy-n-{4-[n-(3-methylbut-2-en-1-yl)carbamimidamido]butyl}-octahydroindole-2-carboximidic acid

(3as,7as)-1-[(2s)-2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-phenylpropanoyl]-6-hydroxy-n-{4-[n-(3-methylbut-2-en-1-yl)carbamimidamido]butyl}-octahydroindole-2-carboximidic acid

C37H52N6O6 (676.3948)


   

acetylacetol 3-o-arabinoside

NA

C37H56O11 (676.3822)


{"Ingredient_id": "HBIN014443","Ingredient_name": "acetylacetol 3-o-arabinoside","Alias": "NA","Ingredient_formula": "C37H56O11","Ingredient_Smile": "NA","Ingredient_weight": "676.843","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "7225","PubChem_id": "NA","DrugBank_id": "NA"}

   

21,22-dihydroxy-1,6,6,15,17,20,20-heptamethyl-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-19,23-dioxaheptacyclo[13.10.0.0²,¹².0⁵,¹⁰.0¹⁰,¹².0¹⁶,²⁴.0¹⁸,²²]pentacos-2-en-14-yl acetate

21,22-dihydroxy-1,6,6,15,17,20,20-heptamethyl-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-19,23-dioxaheptacyclo[13.10.0.0²,¹².0⁵,¹⁰.0¹⁰,¹².0¹⁶,²⁴.0¹⁸,²²]pentacos-2-en-14-yl acetate

C37H56O11 (676.3822)


   

7-hydroxy-3'-(2-hydroxypropan-2-yl)-4,6,12,17,17-pentamethyl-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxaspiro[hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane-8,2'-oxiran]-13-en-3-yl acetate

7-hydroxy-3'-(2-hydroxypropan-2-yl)-4,6,12,17,17-pentamethyl-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxaspiro[hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane-8,2'-oxiran]-13-en-3-yl acetate

C37H56O11 (676.3822)


   
   

(1s,3r,3's,4r,5r,6s,7r,8r,10s,12s,16r,18s,21r)-7-hydroxy-3'-(2-hydroxypropan-2-yl)-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxaspiro[hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane-8,2'-oxiran]-13-en-3-yl acetate

(1s,3r,3's,4r,5r,6s,7r,8r,10s,12s,16r,18s,21r)-7-hydroxy-3'-(2-hydroxypropan-2-yl)-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxaspiro[hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane-8,2'-oxiran]-13-en-3-yl acetate

C37H56O11 (676.3822)


   

(1s,1'r,2r,3'r,4s,4'r,5r,5'r,6'r,10's,12's,13's,16'r,18's,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-{[(2s,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

(1s,1'r,2r,3'r,4s,4'r,5r,5'r,6'r,10's,12's,13's,16'r,18's,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-{[(2s,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

C37H56O11 (676.3822)


   

(1s,3r,3's,4r,5r,6s,7r,8s,10s,12s,16r,18s,21r)-7-hydroxy-3'-(2-hydroxypropan-2-yl)-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxaspiro[hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane-8,2'-oxiran]-13-en-3-yl acetate

(1s,3r,3's,4r,5r,6s,7r,8s,10s,12s,16r,18s,21r)-7-hydroxy-3'-(2-hydroxypropan-2-yl)-4,6,12,17,17-pentamethyl-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxaspiro[hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane-8,2'-oxiran]-13-en-3-yl acetate

C37H56O11 (676.3822)


   

(2s,3as,6s,7as)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-phenylpropanoyl]-6-hydroxy-n-{4-[n-(3-methylbut-2-en-1-yl)carbamimidamido]butyl}-octahydroindole-2-carboximidic acid

(2s,3as,6s,7as)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-phenylpropanoyl]-6-hydroxy-n-{4-[n-(3-methylbut-2-en-1-yl)carbamimidamido]butyl}-octahydroindole-2-carboximidic acid

C37H52N6O6 (676.3948)


   

(1r,1'r,2r,3'r,4s,4'r,5s,5'r,6'r,10's,12's,13's,16'r,18's,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-[(3,4,5-trihydroxyoxan-2-yl)oxy]-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

(1r,1'r,2r,3'r,4s,4'r,5s,5'r,6'r,10's,12's,13's,16'r,18's,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-[(3,4,5-trihydroxyoxan-2-yl)oxy]-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

C37H56O11 (676.3822)


   

(1'r,2r,4'r,5s,5'r,10's,12's,13's,16'r,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-{[(2s)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

(1'r,2r,4'r,5s,5'r,10's,12's,13's,16'r,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-{[(2s)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

C37H56O11 (676.3822)


   

(1s,1'r,2r,3'r,4s,4'r,5r,5'r,6'r,10's,12's,13's,16'r,18's,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

(1s,1'r,2r,3'r,4s,4'r,5r,5'r,6'r,10's,12's,13's,16'r,18's,21'r)-4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

C37H56O11 (676.3822)


   

4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-[(3,4,5-trihydroxyoxan-2-yl)oxy]-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

4-hydroxy-4',5,6',12',17',17'-hexamethyl-18'-[(3,4,5-trihydroxyoxan-2-yl)oxy]-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate

C37H56O11 (676.3822)