Exact Mass: 674.487

Exact Mass Matches: 674.487

Found 181 metabolites which its exact mass value is equals to given mass value 674.487, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PA 34:1

9-Octadecenoic acid (Z)-, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, (R)-

C37H71O8P (674.4886)


   

PA(16:0/18:1(9Z))

9-Octadecenoic acid (Z)-, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, (R)-

C37H71O8P (674.4886)


PA(16:0/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-coA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776). [HMDB] PA(16:0/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).

   

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

C37H71O8P (674.4886)


9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester is classified as a Natural Food Constituent (code WA) in the DF Classified as a Natural Food Constituent (code WA) in the DFC

   

PA(16:0/18:1(11Z))

[(2R)-3-(hexadecanoyloxy)-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886)


PA(16:0/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-coA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776). [HMDB] PA(16:0/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/18:1(11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).

   

PA(18:0/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C37H71O8P (674.4886)


PA(18:0/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/16:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886)


PA(18:1(11Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/16:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886)


PA(18:1(9Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/16:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/14:1(9Z))

[(2R)-3-(icosanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H71O8P (674.4886)


PA(20:0/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/14:1(9Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:1(11Z)/14:0)

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H71O8P (674.4886)


PA(20:1(11Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/14:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

[1-hexadecanoyloxy-3-phosphonooxypropan-2-yl]octadec-9-enoate

[1-hexadecanoyloxy-3-phosphonooxypropan-2-yl]octadec-9-enoate

C37H71O8P (674.4886)


   

PA(16:0/18:1)

9-Octadecenoic acid (Z)-, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, (R)-

C37H71O8P (674.4886)


   

PA(18:1/16:0)[U]

9-Octadecenoic acid (Z)-, 2-[(1-oxohexadecyl)oxy]-3-(phosphonooxy)propyl ester

C37H71O8P (674.4886)


   

PA(12:0/22:1(11Z))

1-dodecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(14:0/20:1(11Z))

1-tetradecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(14:1(9Z)/20:0)

1-(9Z-tetradecenoyl)-2-eicosanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(15:0/19:1(9Z))

1-pentadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(15:1(9Z)/19:0)

1-(9Z-pentadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(16:1(9Z)/18:0)

1-(9Z-hexadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(17:0/17:1(9Z))

1-heptadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(17:1(9Z)/17:0)

1-(9Z-heptadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(19:0/15:1(9Z))

1-nonadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(19:1(9Z)/15:0)

1-(9Z-nonadecenoyl)-2-pentadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(20:0/14:1(9Z))

1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(20:1(11Z)/14:0)

1-(11Z-eicosenoyl)-2-tetradecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(22:1(11Z)/12:0)

1-(11Z-docosenoyl)-2-dodecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(18:0/16:1(9Z))

1-octadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

PA(18:1(9Z)/16:0)

1-(9Z-octadecenoyl)-2-hexadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

[2-(hexadecanoyloxy)-3-[(9E)-octadec-9-enoyloxy]propoxy]phosphonic acid

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

C37H71O8P (674.4886)


   

1-Stearoyl-2-palmitoyl-sn-glycerol 3-phosphate

1-Stearoyl-2-palmitoyl-sn-glycerol 3-phosphate

C37H71O8P-2 (674.4886)


   

(2R)-3-(palmitoyloxy)-2-(stearoyloxy)propyl phosphate

(2R)-3-(palmitoyloxy)-2-(stearoyloxy)propyl phosphate

C37H71O8P-2 (674.4886)


   

1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol 3-phosphate

1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol 3-phosphate

C37H71O8P (674.4886)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

C37H71O8P (674.4886)


   

[2-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

[2-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

C37H70O10 (674.4969)


   

NAGlySer 14:0/20:4

NAGlySer 14:0/20:4

C39H66N2O7 (674.487)


   

NAGlySer 24:4/10:0

NAGlySer 24:4/10:0

C39H66N2O7 (674.487)


   

NAGlySer 16:4/18:0

NAGlySer 16:4/18:0

C39H66N2O7 (674.487)


   

NAGlySer 18:4/16:0

NAGlySer 18:4/16:0

C39H66N2O7 (674.487)


   

NAGlySer 16:3/18:1

NAGlySer 16:3/18:1

C39H66N2O7 (674.487)


   

NAGlySer 18:1/16:3

NAGlySer 18:1/16:3

C39H66N2O7 (674.487)


   

NAGlySer 22:4/12:0

NAGlySer 22:4/12:0

C39H66N2O7 (674.487)


   

NAGlySer 18:3/16:1

NAGlySer 18:3/16:1

C39H66N2O7 (674.487)


   

NAGlySer 20:4/14:0

NAGlySer 20:4/14:0

C39H66N2O7 (674.487)


   

NAGlySer 18:2/16:2

NAGlySer 18:2/16:2

C39H66N2O7 (674.487)


   

NAGlySer 17:2/17:2

NAGlySer 17:2/17:2

C39H66N2O7 (674.487)


   

NAGlySer 20:3/14:1

NAGlySer 20:3/14:1

C39H66N2O7 (674.487)


   

NAGlySer 14:1/20:3

NAGlySer 14:1/20:3

C39H66N2O7 (674.487)


   

NAGlySer 16:2/18:2

NAGlySer 16:2/18:2

C39H66N2O7 (674.487)


   

NAGlySer 16:1/18:3

NAGlySer 16:1/18:3

C39H66N2O7 (674.487)


   

NAGlySer 12:0/22:4

NAGlySer 12:0/22:4

C39H66N2O7 (674.487)


   

NAGlySer 10:0/24:4

NAGlySer 10:0/24:4

C39H66N2O7 (674.487)


   

PMeOH 16:0_17:1

PMeOH 16:0_17:1

C37H71O8P (674.4886)


   

PEtOH 13:0_19:1

PEtOH 13:0_19:1

C37H71O8P (674.4886)


   

PMeOH 19:0_14:1

PMeOH 19:0_14:1

C37H71O8P (674.4886)


   

PEtOH 19:0_13:1

PEtOH 19:0_13:1

C37H71O8P (674.4886)


   

PEtOH 18:0_14:1

PEtOH 18:0_14:1

C37H71O8P (674.4886)


   

PEtOH 15:0_17:1

PEtOH 15:0_17:1

C37H71O8P (674.4886)


   

PMeOH 15:0_18:1

PMeOH 15:0_18:1

C37H71O8P (674.4886)


   

PMeOH 17:0_16:1

PMeOH 17:0_16:1

C37H71O8P (674.4886)


   

PEtOH 17:0_15:1

PEtOH 17:0_15:1

C37H71O8P (674.4886)


   

PMeOH 14:0_19:1

PMeOH 14:0_19:1

C37H71O8P (674.4886)


   

PEtOH 16:0_16:1

PEtOH 16:0_16:1

C37H71O8P (674.4886)


   

PEtOH 12:0_20:1

PEtOH 12:0_20:1

C37H71O8P (674.4886)


   

PMeOH 18:0_15:1

PMeOH 18:0_15:1

C37H71O8P (674.4886)


   

PMeOH 13:0_20:1

PMeOH 13:0_20:1

C37H71O8P (674.4886)


   

PEtOH 14:0_18:1

PEtOH 14:0_18:1

C37H71O8P (674.4886)


   

PMeOH 12:0_21:1

PMeOH 12:0_21:1

C37H71O8P (674.4886)


   

PMeOH 20:0_13:1

PMeOH 20:0_13:1

C37H71O8P (674.4886)


   

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] henicosanoate

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] henicosanoate

C37H70O10 (674.4969)


   

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentacosanoate

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentacosanoate

C37H70O10 (674.4969)


   

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate

C37H70O10 (674.4969)


   

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate

C37H70O10 (674.4969)


   

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tricosanoate

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tricosanoate

C37H70O10 (674.4969)


   

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexacosanoate

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexacosanoate

C37H70O10 (674.4969)


   

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetracosanoate

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetracosanoate

C37H70O10 (674.4969)


   

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate

C37H70O10 (674.4969)


   

[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

C37H70O10 (674.4969)


   

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

C37H70O10 (674.4969)


   

[1-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

[1-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

C37H70O10 (674.4969)


   

[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

C37H70O10 (674.4969)


   

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate

C37H71O8P (674.4886)


   

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

C37H71O8P (674.4886)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-henicos-11-enoate

C37H71O8P (674.4886)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-icos-11-enoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-icos-11-enoate

C37H71O8P (674.4886)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H71O8P (674.4886)


   

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (Z)-tetracos-13-enoate

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (Z)-tetracos-13-enoate

C37H71O8P (674.4886)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

C37H71O8P (674.4886)


   

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] henicosanoate

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] henicosanoate

C37H71O8P (674.4886)


   

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C37H71O8P (674.4886)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

C37H71O8P (674.4886)


   

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] icosanoate

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] icosanoate

C37H71O8P (674.4886)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

C37H71O8P (674.4886)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] heptadecanoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] heptadecanoate

C37H71O8P (674.4886)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] heptadecanoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] heptadecanoate

C37H70O10 (674.4969)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C37H71O8P (674.4886)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate

C37H70O10 (674.4969)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

C44H66O5 (674.491)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C37H71O8P (674.4886)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-13-enoate

C37H71O8P (674.4886)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

C37H71O8P (674.4886)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate

C37H70O10 (674.4969)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C37H71O8P (674.4886)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H71O8P (674.4886)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-13-enoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-13-enoate

C37H71O8P (674.4886)


   

[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate

C37H70O10 (674.4969)


   

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

C37H71O8P (674.4886)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

C37H71O8P (674.4886)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

C37H71O8P (674.4886)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-icos-11-enoate

C37H71O8P (674.4886)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] icosanoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] icosanoate

C37H71O8P (674.4886)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate

C37H70O10 (674.4969)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

C37H71O8P (674.4886)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

C37H71O8P (674.4886)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C37H71O8P (674.4886)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

C37H71O8P (674.4886)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

C37H71O8P (674.4886)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

C37H71O8P (674.4886)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C37H71O8P (674.4886)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C37H71O8P (674.4886)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

C37H71O8P (674.4886)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] octadec-17-enoate

C37H71O8P (674.4886)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

C44H66O5 (674.491)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] heptadecanoate

C37H71O8P (674.4886)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C37H71O8P (674.4886)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentadecanoate

C37H70O10 (674.4969)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] pentadecanoate

C37H70O10 (674.4969)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate

C37H70O10 (674.4969)


   

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

C37H71O8P (674.4886)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-11-enoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-icos-11-enoate

C37H71O8P (674.4886)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] icosanoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] icosanoate

C37H71O8P (674.4886)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] octadec-17-enoate

C37H71O8P (674.4886)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

C37H70O10 (674.4969)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

C37H71O8P (674.4886)


   

PA(16:0/18:1(11Z))

PA(16:0/18:1(11Z))

C37H71O8P (674.4886)


   

1-oleoyl-2-palmitoyl-sn-glycero-3-phosphate

1-oleoyl-2-palmitoyl-sn-glycero-3-phosphate

C37H71O8P (674.4886)


A 1-acyl-2-hexadecanoyl-sn-glycero-3-phosphate in which the 1-acyl group is specified as oleoyl (9Z-octadecaenoyl).

   

1-octadecanoyl-2-(9Z)-hexadecenoyl-sn-glycero-3-phosphate

1-octadecanoyl-2-(9Z)-hexadecenoyl-sn-glycero-3-phosphate

C37H71O8P (674.4886)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as octadecanoyl and (9Z)-hexadecenoyl respectively.

   

1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-(11Z-eicosenoyl)-2-tetradecanoyl-glycero-3-phosphate

1-(11Z-eicosenoyl)-2-tetradecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

9-Octadecenoic acid 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonoxy)ethyl ester

C37H71O8P (674.4886)


   

1-tetradecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

1-tetradecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-dodecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

1-dodecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphate(2-)

1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphate(2-)

C37H71O8P (674.4886)


A 1-acyl-2-octadecanoyl-sn-glycero-3-phosphate(2-) in which the 1-acyl group is specified as hexadecanoyl (palmitoyl); major species at pH 7.3.

   

1-(9Z-pentadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

1-(9Z-pentadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-(9Z-heptadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

1-(9Z-heptadecenoyl)-2-heptadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-nonadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

1-nonadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-(9Z-tetradecenoyl)-2-eicosanoyl-glycero-3-phosphate

1-(9Z-tetradecenoyl)-2-eicosanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-pentadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

1-pentadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-(9Z-hexadecenoyl)-2-octadecanoyl-glycero-3-phosphate

1-(9Z-hexadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-heptadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

1-heptadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-(9Z-nonadecenoyl)-2-pentadecanoyl-glycero-3-phosphate

1-(9Z-nonadecenoyl)-2-pentadecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

1-(11Z-docosenoyl)-2-dodecanoyl-glycero-3-phosphate

1-(11Z-docosenoyl)-2-dodecanoyl-glycero-3-phosphate

C37H71O8P (674.4886)


   

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) octadec-9-enoate

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) octadec-9-enoate

C37H71O8P (674.4886)


   

phosphatidic acid (16:0/18:1)

phosphatidic acid (16:0/18:1)

C37H71O8P (674.4886)


A phosphatidic acid in which one acyl group has 16 carbons and is fully saturated while the other has 18 carbons and 1 double bond.

   

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate

C37H71O8P (674.4886)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the 1- and 2-acyl groups are palmitoyl and oleoyl respectively.

   

BisMePA(32:1)

BisMePA(16:0_16:1)

C37H71O8P (674.4886)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(33:1)

PMe(17:1_16:0)

C37H71O8P (674.4886)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(28:0)

MGDG(14:0_14:0)

C37H70O10 (674.4969)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(32:1)

PEt(16:0_16:1)

C37H71O8P (674.4886)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG 10:0_18:0

MGDG 10:0_18:0

C37H70O10 (674.4969)


   

MGDG 11:0_17:0

MGDG 11:0_17:0

C37H70O10 (674.4969)


   

MGDG 12:0_16:0

MGDG 12:0_16:0

C37H70O10 (674.4969)


   

MGDG 13:0_15:0

MGDG 13:0_15:0

C37H70O10 (674.4969)


   

MGDG 14:0_14:0

MGDG 14:0_14:0

C37H70O10 (674.4969)


   
   

MGDG O-28:1;O

MGDG O-28:1;O

C37H70O10 (674.4969)


   
   

PA O-16:0/18:2;O

PA O-16:0/18:2;O

C37H71O8P (674.4886)


   
   

PA P-16:0/18:1;O

PA P-16:0/18:1;O

C37H71O8P (674.4886)