Exact Mass: 664.4374318

Exact Mass Matches: 664.4374318

Found 91 metabolites which its exact mass value is equals to given mass value 664.4374318, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Paliperidone Palmitate

3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-2-methyl-4-oxo-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-9-yl hexadecanoic acid

C39H57FN4O4 (664.4363613999999)


   

PA(13:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(13:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/13:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(18:1(12Z)-2OH(9,10)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/13:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(a-13:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/a-13:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(18:1(12Z)-2OH(9,10)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/a-13:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(i-13:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/i-13:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(18:1(12Z)-2OH(9,10)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/i-13:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

methyl (1E,5S,9R,10S,12Z,14aS,17S,21R,24S,26aS,26bS)-3,5,8,9,10,11,14a,15,16,17,18,19,20,21,22,23,24,25,26,26b-icosahydro-10-hydroxy-2,6,10,13,17,21-hexamethyl-15,22,25-trioxo-24-(propan-2-yl)-5,9-epoxybenzo[1,2-a:3,4-a?]di[14]annulene-26a(4H)-carboxylate|sarcophytolide J

methyl (1E,5S,9R,10S,12Z,14aS,17S,21R,24S,26aS,26bS)-3,5,8,9,10,11,14a,15,16,17,18,19,20,21,22,23,24,25,26,26b-icosahydro-10-hydroxy-2,6,10,13,17,21-hexamethyl-15,22,25-trioxo-24-(propan-2-yl)-5,9-epoxybenzo[1,2-a:3,4-a?]di[14]annulene-26a(4H)-carboxylate|sarcophytolide J

C41H60O7 (664.4338809999999)


   
   
   

PG(12:0/16:1(9Z))

1-dodecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(13:0/15:1(9Z))

1-tridecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(14:0/14:1(9Z))

1-tetradecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(14:1(9Z)/14:0)

1-(9Z-tetradecenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(15:1(9Z)/13:0)

1-(9Z-pentadecenoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(16:1(9Z)/12:0)

1-(9Z-hexadecenoyl)-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG 28:1

1-(9Z-tetradecenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

Paliperidone Palmitate

Paliperidone Palmitate

C39H57FN4O4 (664.4363613999999)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Paliperidone palmitate (9-Hydroxyrisperidone palmitate), an atypical long-acting antipsychotic agent, is an ester proagent of Paliperidone. Paliperidone is a dopamine antagonist and 5-HT2A antagonist of the atypical antipsychotic class. Paliperidone palmitate shows efficacy against schizophrenia[1].

   

PA(13:0/18:1(12Z)-2OH(9,10))

PA(13:0/18:1(12Z)-2OH(9,10))

C34H65O10P (664.431512)


   

PA(18:1(12Z)-2OH(9,10)/13:0)

PA(18:1(12Z)-2OH(9,10)/13:0)

C34H65O10P (664.431512)


   

PA(a-13:0/18:1(12Z)-2OH(9,10))

PA(a-13:0/18:1(12Z)-2OH(9,10))

C34H65O10P (664.431512)


   

PA(18:1(12Z)-2OH(9,10)/a-13:0)

PA(18:1(12Z)-2OH(9,10)/a-13:0)

C34H65O10P (664.431512)


   

PA(i-13:0/18:1(12Z)-2OH(9,10))

PA(i-13:0/18:1(12Z)-2OH(9,10))

C34H65O10P (664.431512)


   

PA(18:1(12Z)-2OH(9,10)/i-13:0)

PA(18:1(12Z)-2OH(9,10)/i-13:0)

C34H65O10P (664.431512)


   
   
   

[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

C34H65O10P (664.431512)


   

[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-docos-13-enoate

[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-docos-13-enoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C34H65O10P (664.431512)


   

[1-[(2-acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[(2-acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C34H65O10P (664.431512)


   

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

C34H65O10P (664.431512)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tetradecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tetradecanoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C34H65O10P (664.431512)


   

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-octadec-9-enoate

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-octadec-9-enoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] pentadecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] pentadecanoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C34H65O10P (664.431512)


   

Isodiotigenin-tri-trimethylsilyl ether

Isodiotigenin-tri-trimethylsilyl ether

C36H68O5Si3 (664.4374318)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-icos-11-enoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (Z)-docos-13-enoate

C34H65O10P (664.431512)


   

[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C34H65O10P (664.431512)


   

[1-acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C34H65O10P (664.431512)


   

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C34H65O10P (664.431512)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] pentadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] pentadecanoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C34H65O10P (664.431512)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tetradecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tetradecanoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

C34H65O10P (664.431512)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

C34H65O10P (664.431512)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-heptadec-9-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-heptadec-9-enoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] octadec-17-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] octadec-17-enoate

C34H65O10P (664.431512)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

C34H65O10P (664.431512)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

C34H65O10P (664.431512)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

C34H65O10P (664.431512)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-hexadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-hexadec-9-enoate

C34H65O10P (664.431512)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

C34H65O10P (664.431512)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-hexadec-7-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-hexadec-7-enoate

C34H65O10P (664.431512)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] tetradecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] tetradecanoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

C34H65O10P (664.431512)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-pentadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-pentadec-9-enoate

C34H65O10P (664.431512)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-pentadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-pentadec-9-enoate

C34H65O10P (664.431512)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

C34H65O10P (664.431512)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

C34H65O10P (664.431512)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

C34H65O10P (664.431512)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

C34H65O10P (664.431512)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] tetradecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] tetradecanoate

C34H65O10P (664.431512)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

C34H65O10P (664.431512)


   

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H63NO7P+ (664.4341918)


   
   
   
   
   
   
   
   
   
   
   
   
   
   

(2s,3r,4r,5r,6s)-2-{[(4e,6z,8z,10e,12e,14e,16z,18z,20e)-2-hydroxy-21-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,6,10,15,19-pentamethylhenicosa-4,6,8,10,12,14,16,18,20-nonaen-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(4e,6z,8z,10e,12e,14e,16z,18z,20e)-2-hydroxy-21-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,6,10,15,19-pentamethylhenicosa-4,6,8,10,12,14,16,18,20-nonaen-3-yl]oxy}-6-methyloxane-3,4,5-triol

C41H60O7 (664.4338809999999)