Exact Mass: 662.5597

Exact Mass Matches: 662.5597

Found 46 metabolites which its exact mass value is equals to given mass value 662.5597, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

CE(DiMe(9,3))

2,15-dimethyl-14-(6-methylheptan-2-yl)tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoate

C45H74O3 (662.5638)


CE(DiMe(9,3)) is a cholesterol fatty acid ester or simply a cholesterol ester (CE). Cholesterol esters are cholesterol molecules with long-chain fatty acids linked to the hydroxyl group. They are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesterol esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of C18 fatty acids. Cholesterol esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesterol esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesterol esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesterol esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesterol esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesterol esters from CoA esters of fatty acids and cholesterol. Cholesterol ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells.

   

CE(7F7)

[10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] 7-(5-heptylfuran-2-yl)heptanoate

C45H74O3 (662.5638)


CE(7F7) is a furan fatty acid ester of cholesterol or simply a cholesteryl ester (CE). Cholesteryl esters are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesteryl esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesteryl esters tend to contain relatively high proportions of C18 fatty acids. Cholesteryl esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesteryl esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesteryl esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesteryl esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesteryl esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesteryl esters from CoA esters of fatty acids and cholesterol. Cholesteryl ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. The shorthand notation for CE(7F7) refers to the furan fatty acids 7-carbon carboxyalkyl moiety, the non-methylated furan moiety, and its 7-carbon alkyl moiety.

   

CE(8F6)

[10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] 8-(5-hexylfuran-2-yl)octanoate

C45H74O3 (662.5638)


CE(8F6) is a furan fatty acid ester of cholesterol or simply a cholesteryl ester (CE). Cholesteryl esters are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesteryl esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesteryl esters tend to contain relatively high proportions of C18 fatty acids. Cholesteryl esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesteryl esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesteryl esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesteryl esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesteryl esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesteryl esters from CoA esters of fatty acids and cholesterol. Cholesteryl ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. The shorthand notation for CE(8F6) refers to the furan fatty acids 8-carbon carboxyalkyl moiety, the non-methylated furan moiety, and its 6-carbon alkyl moiety.

   

CE(9F5)

[10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] 9-(5-pentylfuran-2-yl)nonanoate

C45H74O3 (662.5638)


CE(9F5) is a furan fatty acid ester of cholesterol or simply a cholesteryl ester (CE). Cholesteryl esters are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesteryl esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesteryl esters tend to contain relatively high proportions of C18 fatty acids. Cholesteryl esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesteryl esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesteryl esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesteryl esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesteryl esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesteryl esters from CoA esters of fatty acids and cholesterol. Cholesteryl ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. The shorthand notation for CE(9F5) refers to the furan fatty acids 9-carbon carboxyalkyl moiety, the non-methylated furan moiety, and its 5-carbon alkyl moiety.

   

CE(9M4)

[10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] 9-(5-butyl-3-methylfuran-2-yl)nonanoate

C45H74O3 (662.5638)


CE(9M4) is a furan fatty acid ester of cholesterol or simply a cholesteryl ester (CE). Cholesteryl esters are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesteryl esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesteryl esters tend to contain relatively high proportions of C18 fatty acids. Cholesteryl esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesteryl esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesteryl esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesteryl esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesteryl esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesteryl esters from CoA esters of fatty acids and cholesterol. Cholesteryl ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. The shorthand notation for CE(9M4) refers to the furan fatty acids 9-carbon carboxyalkyl moiety, the methyl substitution in the 3-position of its furan moiety, and its 4-carbon alkyl moiety.

   

CE(18:2(10E,12Z)+=O(9))

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl (10E,12Z)-9-oxooctadeca-10,12-dienoate

C45H74O3 (662.5638)


CE(18:2(10E,12Z)+=O(9)) belongs to the family of cholesteryl esters, whose structure is characetized by a cholesterol esterified at the 3-position with a fatty acid. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). CE(18:2(10E,12Z)+=O(9)) may also accumulate in hereditary hypercholesterolemia, an inborn error of metabolism.

   

CE(18:2(9Z,11E)+=O(13))

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl (9Z,11E)-13-oxooctadeca-9,11-dienoate

C45H74O3 (662.5638)


CE(18:2(9Z,11E)+=O(13)) belongs to the family of cholesteryl esters, whose structure is characetized by a cholesterol esterified at the 3-position with a fatty acid. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). CE(18:2(9Z,11E)+=O(13)) may also accumulate in hereditary hypercholesterolemia, an inborn error of metabolism.

   

CE(18:3(10,12,15)-OH(9))

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C45H74O3 (662.5638)


CE(18:3(10,12,15)-OH(9)) belongs to the family of cholesteryl esters, whose structure is characetized by a cholesterol esterified at the 3-position with a fatty acid. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). CE(18:3(10,12,15)-OH(9)) may also accumulate in hereditary hypercholesterolemia, an inborn error of metabolism.

   

CE(18:3(9,11,15)-OH(13))

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C45H74O3 (662.5638)


CE(18:3(9,11,15)-OH(13)) belongs to the family of cholesteryl esters, whose structure is characetized by a cholesterol esterified at the 3-position with a fatty acid. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). CE(18:3(9,11,15)-OH(13)) may also accumulate in hereditary hypercholesterolemia, an inborn error of metabolism.

   
   

CE(18:2(10E,12Z)+=O(9))

CE(18:2(10E,12Z)+=O(9))

C45H74O3 (662.5638)


   

CE(18:2(9Z,11E)+=O(13))

CE(18:2(9Z,11E)+=O(13))

C45H74O3 (662.5638)


   

[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C45H74O3 (662.5638)


   

[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C45H74O3 (662.5638)


   

NAOrn 21:2/14:0

NAOrn 21:2/14:0

C40H74N2O5 (662.5597)


   

NAOrn 21:1/14:1

NAOrn 21:1/14:1

C40H74N2O5 (662.5597)


   

NAOrn 20:1/15:1

NAOrn 20:1/15:1

C40H74N2O5 (662.5597)


   

NAOrn 17:1/18:1

NAOrn 17:1/18:1

C40H74N2O5 (662.5597)


   

NAOrn 24:2/11:0

NAOrn 24:2/11:0

C40H74N2O5 (662.5597)


   

NAOrn 17:0/18:2

NAOrn 17:0/18:2

C40H74N2O5 (662.5597)


   

NAOrn 17:2/18:0

NAOrn 17:2/18:0

C40H74N2O5 (662.5597)


   

NAOrn 19:2/16:0

NAOrn 19:2/16:0

C40H74N2O5 (662.5597)


   

NAOrn 15:0/20:2

NAOrn 15:0/20:2

C40H74N2O5 (662.5597)


   

NAOrn 18:2/17:0

NAOrn 18:2/17:0

C40H74N2O5 (662.5597)


   

NAOrn 15:1/20:1

NAOrn 15:1/20:1

C40H74N2O5 (662.5597)


   

NAOrn 16:2/19:0

NAOrn 16:2/19:0

C40H74N2O5 (662.5597)


   

NAOrn 22:2/13:0

NAOrn 22:2/13:0

C40H74N2O5 (662.5597)


   

NAOrn 19:1/16:1

NAOrn 19:1/16:1

C40H74N2O5 (662.5597)


   

NAOrn 11:0/24:2

NAOrn 11:0/24:2

C40H74N2O5 (662.5597)


   

NAOrn 13:0/22:2

NAOrn 13:0/22:2

C40H74N2O5 (662.5597)


   

NAOrn 16:0/19:2

NAOrn 16:0/19:2

C40H74N2O5 (662.5597)


   

NAOrn 14:1/21:1

NAOrn 14:1/21:1

C40H74N2O5 (662.5597)


   

NAOrn 20:2/15:0

NAOrn 20:2/15:0

C40H74N2O5 (662.5597)


   

NAOrn 18:0/17:2

NAOrn 18:0/17:2

C40H74N2O5 (662.5597)


   

NAOrn 22:1/13:1

NAOrn 22:1/13:1

C40H74N2O5 (662.5597)


   

NAOrn 18:1/17:1

NAOrn 18:1/17:1

C40H74N2O5 (662.5597)


   

NAOrn 16:1/19:1

NAOrn 16:1/19:1

C40H74N2O5 (662.5597)


   

NAOrn 14:0/21:2

NAOrn 14:0/21:2

C40H74N2O5 (662.5597)


   

NAOrn 19:0/16:2

NAOrn 19:0/16:2

C40H74N2O5 (662.5597)


   

NAOrn 13:1/22:1

NAOrn 13:1/22:1

C40H74N2O5 (662.5597)


   
   

3-{[10-(2-hexylcyclopropyl)-2-hydroxydecanoyl]oxy}-n-(2-hydroxy-3,4,5,6-tetrahydropyridin-3-yl)hexadecanimidic acid

3-{[10-(2-hexylcyclopropyl)-2-hydroxydecanoyl]oxy}-n-(2-hydroxy-3,4,5,6-tetrahydropyridin-3-yl)hexadecanimidic acid

C40H74N2O5 (662.5597)


   

(3r)-3-{[(2r)-4-[(1s,2r)-2-dodecylcyclopropyl]-2-hydroxybutanoyl]oxy}-n-[(3r)-2-hydroxy-3,4,5,6-tetrahydropyridin-3-yl]hexadecanimidic acid

(3r)-3-{[(2r)-4-[(1s,2r)-2-dodecylcyclopropyl]-2-hydroxybutanoyl]oxy}-n-[(3r)-2-hydroxy-3,4,5,6-tetrahydropyridin-3-yl]hexadecanimidic acid

C40H74N2O5 (662.5597)


   

(3s)-3-{[(2s)-10-[(1s,2r)-2-hexylcyclopropyl]-2-hydroxydecanoyl]oxy}-n-[(3r)-2-hydroxy-3,4,5,6-tetrahydropyridin-3-yl]hexadecanimidic acid

(3s)-3-{[(2s)-10-[(1s,2r)-2-hexylcyclopropyl]-2-hydroxydecanoyl]oxy}-n-[(3r)-2-hydroxy-3,4,5,6-tetrahydropyridin-3-yl]hexadecanimidic acid

C40H74N2O5 (662.5597)


   

3-{[4-(2-dodecylcyclopropyl)-2-hydroxybutanoyl]oxy}-n-(2-hydroxy-3,4,5,6-tetrahydropyridin-3-yl)hexadecanimidic acid

3-{[4-(2-dodecylcyclopropyl)-2-hydroxybutanoyl]oxy}-n-(2-hydroxy-3,4,5,6-tetrahydropyridin-3-yl)hexadecanimidic acid

C40H74N2O5 (662.5597)