Exact Mass: 662.3831859999999

Exact Mass Matches: 662.3831859999999

Found 56 metabolites which its exact mass value is equals to given mass value 662.3831859999999, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PA(10:0/PGF2alpha)

[(2R)-3-(decanoyloxy)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(10:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/PGF2alpha), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/10:0)

[(2R)-2-(decanoyloxy)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(PGF2alpha/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/10:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(10:0/PGE1)

[(2R)-3-(decanoyloxy)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(10:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/PGE1), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/10:0)

[(2R)-2-(decanoyloxy)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(PGE1/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/10:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(10:0/PGD1)

[(2R)-3-(decanoyloxy)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(10:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/PGD1), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/10:0)

[(2R)-2-(decanoyloxy)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(PGD1/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/10:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(dodecanoyloxy)propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(12:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/5-iso PGF2VI), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/12:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(dodecanoyloxy)propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(5-iso PGF2VI/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/12:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(i-12:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/5-iso PGF2VI), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/i-12:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C33H59O11P (662.3794793999999)


PA(5-iso PGF2VI/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/i-12:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

2-{[2,4,6-trihydroxy-5-(3,7-dimethyl-2,6-octadienyl)-3-butanoylphenyl]methyl}-3,5-dihydroxy-4-methyl-4-(3,7-dimethyl-2,6-octadienyl)-6-acetyl-2,5-cyclohexadien-1-one|yungensin E

2-{[2,4,6-trihydroxy-5-(3,7-dimethyl-2,6-octadienyl)-3-butanoylphenyl]methyl}-3,5-dihydroxy-4-methyl-4-(3,7-dimethyl-2,6-octadienyl)-6-acetyl-2,5-cyclohexadien-1-one|yungensin E

C40H54O8 (662.3818484000001)


   

16-decarbomethoxyvoacamine-pseudoindoxyl

16-decarbomethoxyvoacamine-pseudoindoxyl

C41H50N4O4 (662.3831859999999)


   
   

(+)-2alpha,16beta,31-triacetylbuxiran

(+)-2alpha,16beta,31-triacetylbuxiran

C39H54N2O7 (662.3930814)


   

OHDdiA-PA

1-(9Z-octadecenoyl)-2-(9-hydroxy-11-carboxy-10E-undecenoyl)-sn-glycero-3-phosphate

C33H59O11P (662.3794793999999)


   

Fruticoside F

Fruticoside F

C37H58O8S (662.3852188000001)


A steroid saponin that is ergosta-7,24(28)-diene-21-thioic S-acid attached to an acetyloxy group at position 2, an alpha-L-quinovopyranosyloxy group at position 3 and a methyl group at position 4 (the 2alpha,3beta,4alpha,5alpha stereoisomer). It has been isolated from the roots of Breynia fruticosa.

   
   
   
   
   
   
   
   
   
   
   

Yungensin E

Yungensin E

C40H54O8 (662.3818484000001)


A natural product found in Elaphoglossum yungense.

   

N-[5-[4-[3,6-bis(dimethylamino)acridin-10-ium-10-yl]butanoylamino]pentyl]-5-(2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl)pentanamide

N-[5-[4-[3,6-bis(dimethylamino)acridin-10-ium-10-yl]butanoylamino]pentyl]-5-(2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl)pentanamide

C36H52N7O3S+ (662.3852142)


   

2-[[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C36H57NO8P+ (662.3821592)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

(4as,5r,6s,8ar,9ar)-9a-[(4as,5r,6s,8ar,9ar)-3,4a,5-trimethyl-6-{[(2z)-2-methylbut-2-enoyl]oxy}-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-9a-yl]-3,4a,5-trimethyl-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-6-yl (2z)-2-methylbut-2-enoate

(4as,5r,6s,8ar,9ar)-9a-[(4as,5r,6s,8ar,9ar)-3,4a,5-trimethyl-6-{[(2z)-2-methylbut-2-enoyl]oxy}-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-9a-yl]-3,4a,5-trimethyl-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-6-yl (2z)-2-methylbut-2-enoate

C40H54O8 (662.3818484000001)


   

(4as,5r,6s,8ar,9as)-9a-[(4as,5r,6s,8ar,9as)-3,4a,5-trimethyl-6-{[(2z)-2-methylbut-2-enoyl]oxy}-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-9a-yl]-3,4a,5-trimethyl-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-6-yl (2z)-2-methylbut-2-enoate

(4as,5r,6s,8ar,9as)-9a-[(4as,5r,6s,8ar,9as)-3,4a,5-trimethyl-6-{[(2z)-2-methylbut-2-enoyl]oxy}-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-9a-yl]-3,4a,5-trimethyl-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-6-yl (2z)-2-methylbut-2-enoate

C40H54O8 (662.3818484000001)


   

methyl (1s,12r,14s,18s)-12-[(1's,2s,3'r,8's,9's)-9'-ethyl-5-methoxy-3-oxo-1h-7'-azaspiro[indole-2,4'-tricyclo[5.3.1.0³,⁸]undecan]-6-yl]-15-ethylidene-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

methyl (1s,12r,14s,18s)-12-[(1's,2s,3'r,8's,9's)-9'-ethyl-5-methoxy-3-oxo-1h-7'-azaspiro[indole-2,4'-tricyclo[5.3.1.0³,⁸]undecan]-6-yl]-15-ethylidene-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

C41H50N4O4 (662.3831859999999)


   

2-acetyl-6-{[3-butanoyl-5-(3,7-dimethylocta-2,6-dien-1-yl)-2,4,6-trihydroxyphenyl]methyl}-4-(3,7-dimethylocta-2,6-dien-1-yl)-3,5-dihydroxy-4-methylcyclohexa-2,5-dien-1-one

2-acetyl-6-{[3-butanoyl-5-(3,7-dimethylocta-2,6-dien-1-yl)-2,4,6-trihydroxyphenyl]methyl}-4-(3,7-dimethylocta-2,6-dien-1-yl)-3,5-dihydroxy-4-methylcyclohexa-2,5-dien-1-one

C40H54O8 (662.3818484000001)


   

methyl (1s,12r,14s,15e,18s)-12-[(1's,2s,3'r,8's,9's)-9'-ethyl-5-methoxy-3-oxo-1h-7'-azaspiro[indole-2,4'-tricyclo[5.3.1.0³,⁸]undecan]-6-yl]-15-ethylidene-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

methyl (1s,12r,14s,15e,18s)-12-[(1's,2s,3'r,8's,9's)-9'-ethyl-5-methoxy-3-oxo-1h-7'-azaspiro[indole-2,4'-tricyclo[5.3.1.0³,⁸]undecan]-6-yl]-15-ethylidene-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraene-18-carboxylate

C41H50N4O4 (662.3831859999999)


   

n-[5,14-bis(acetyloxy)-7-[(acetyloxy)methyl]-15-[1-(dimethylamino)ethyl]-7,12,16-trimethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),3-dien-6-yl]benzenecarboximidic acid

n-[5,14-bis(acetyloxy)-7-[(acetyloxy)methyl]-15-[1-(dimethylamino)ethyl]-7,12,16-trimethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),3-dien-6-yl]benzenecarboximidic acid

C39H54N2O7 (662.3930814)


   

9a-{3,4a,5-trimethyl-6-[(2-methylbut-2-enoyl)oxy]-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-9a-yl}-3,4a,5-trimethyl-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-6-yl 2-methylbut-2-enoate

9a-{3,4a,5-trimethyl-6-[(2-methylbut-2-enoyl)oxy]-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-9a-yl}-3,4a,5-trimethyl-2-oxo-4h,5h,6h,7h,8h,8ah,9h-naphtho[2,3-b]furan-6-yl 2-methylbut-2-enoate

C40H54O8 (662.3818484000001)


   

(2r,3r,4s,5s,6r)-3-(acetyloxy)-2-[(acetyloxy)methyl]-5-(propanoyloxy)-6-[(2r,3s)-2,3,4-trihydroxybutoxy]oxan-4-yl hexadecanoate

(2r,3r,4s,5s,6r)-3-(acetyloxy)-2-[(acetyloxy)methyl]-5-(propanoyloxy)-6-[(2r,3s)-2,3,4-trihydroxybutoxy]oxan-4-yl hexadecanoate

C33H58O13 (662.3877218)


   

(4r)-2-acetyl-6-({3-butanoyl-5-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-2,4,6-trihydroxyphenyl}methyl)-4-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-3,5-dihydroxy-4-methylcyclohexa-2,5-dien-1-one

(4r)-2-acetyl-6-({3-butanoyl-5-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-2,4,6-trihydroxyphenyl}methyl)-4-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-3,5-dihydroxy-4-methylcyclohexa-2,5-dien-1-one

C40H54O8 (662.3818484000001)


   

3-(acetyloxy)-2-[(acetyloxy)methyl]-5-(propanoyloxy)-6-(2,3,4-trihydroxybutoxy)oxan-4-yl hexadecanoate

3-(acetyloxy)-2-[(acetyloxy)methyl]-5-(propanoyloxy)-6-(2,3,4-trihydroxybutoxy)oxan-4-yl hexadecanoate

C33H58O13 (662.3877218)


   

n-[(5r,6r,7s,8r,11r,12s,14r,15s,16r)-5,14-bis(acetyloxy)-7-[(acetyloxy)methyl]-15-[(1s)-1-(dimethylamino)ethyl]-7,12,16-trimethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),3-dien-6-yl]benzenecarboximidic acid

n-[(5r,6r,7s,8r,11r,12s,14r,15s,16r)-5,14-bis(acetyloxy)-7-[(acetyloxy)methyl]-15-[(1s)-1-(dimethylamino)ethyl]-7,12,16-trimethyltetracyclo[9.7.0.0³,⁸.0¹²,¹⁶]octadeca-1(18),3-dien-6-yl]benzenecarboximidic acid

C39H54N2O7 (662.3930814)