Exact Mass: 644.401

Exact Mass Matches: 644.401

Found 98 metabolites which its exact mass value is equals to given mass value 644.401, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

O-Methylganoderic acid O

(2E)-5-(acetyloxy)-6-[5,12-bis(acetyloxy)-9-methoxy-2,6,6,11,15-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-1(10)-en-14-yl]-2-methylhept-2-enoic acid

C37H56O9 (644.3924)


O-Methylganoderic acid O is found in mushrooms. O-Methylganoderic acid O is a constituent of cultured mycelium of Ganoderma lucidum (reishi) Constituent of cultured mycelium of Ganoderma lucidum (reishi). O-Methylganoderic acid O is found in mushrooms.

   

PA(13:0/18:2(10E,12Z)+=O(9))

[(2R)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(13:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(10E,12Z)+=O(9)/13:0)

[(2R)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:2(10E,12Z)+=O(9)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(10E,12Z)+=O(9)/13:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/18:2(9Z,11E)+=O(13))

[(2R)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(13:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11E)+=O(13)/13:0)

[(2R)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:2(9Z,11E)+=O(13)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11E)+=O(13)/13:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/18:3(10,12,15)-OH(9))

[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(13:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(10,12,15)-OH(9)/13:0)

[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:3(10,12,15)-OH(9)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(10,12,15)-OH(9)/13:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/18:3(9,11,15)-OH(13))

[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(13:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9,11,15)-OH(13)/13:0)

[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:3(9,11,15)-OH(13)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9,11,15)-OH(13)/13:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/18:2(10E,12Z)+=O(9))

[(2R)-3-[(10-methyldodecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(a-13:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(10E,12Z)+=O(9)/a-13:0)

[(2R)-2-[(10-methyldodecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:2(10E,12Z)+=O(9)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(10E,12Z)+=O(9)/a-13:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/18:2(9Z,11E)+=O(13))

[(2R)-3-[(10-methyldodecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(a-13:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11E)+=O(13)/a-13:0)

[(2R)-2-[(10-methyldodecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:2(9Z,11E)+=O(13)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11E)+=O(13)/a-13:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/18:3(10,12,15)-OH(9))

[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(a-13:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(10,12,15)-OH(9)/a-13:0)

[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:3(10,12,15)-OH(9)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(10,12,15)-OH(9)/a-13:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/18:3(9,11,15)-OH(13))

[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(a-13:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9,11,15)-OH(13)/a-13:0)

[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:3(9,11,15)-OH(13)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9,11,15)-OH(13)/a-13:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/18:2(10E,12Z)+=O(9))

[(2R)-3-[(11-methyldodecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(i-13:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(10E,12Z)+=O(9)/i-13:0)

[(2R)-2-[(11-methyldodecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:2(10E,12Z)+=O(9)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(10E,12Z)+=O(9)/i-13:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/18:2(9Z,11E)+=O(13))

[(2R)-3-[(11-methyldodecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(i-13:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11E)+=O(13)/i-13:0)

[(2R)-2-[(11-methyldodecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:2(9Z,11E)+=O(13)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11E)+=O(13)/i-13:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/18:3(10,12,15)-OH(9))

[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(i-13:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(10,12,15)-OH(9)/i-13:0)

[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:3(10,12,15)-OH(9)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(10,12,15)-OH(9)/i-13:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/18:3(9,11,15)-OH(13))

[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(i-13:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9,11,15)-OH(13)/i-13:0)

[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H61O9P (644.4053)


PA(18:3(9,11,15)-OH(13)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9,11,15)-OH(13)/i-13:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

Fucoxanthin

Fucoxanthin

C41H56O6 (644.4077)


   

25-anhydrocimigenol-3-O-[3-O-acetyl-alpha-L-arabinopyranoside]

25-anhydrocimigenol-3-O-[3-O-acetyl-alpha-L-arabinopyranoside]

C37H56O9 (644.3924)


   

onchidionol

onchidionol

C37H56O9 (644.3924)


   

16beta:23-epoxy-12beta-acetoxy-22,23-didehydro-24-one-25-hydro-9,19-cyclolanostane-3-O-beta-D-xylopyranoside|asiaticoside A

16beta:23-epoxy-12beta-acetoxy-22,23-didehydro-24-one-25-hydro-9,19-cyclolanostane-3-O-beta-D-xylopyranoside|asiaticoside A

C37H56O9 (644.3924)


   

25-anhydrocimicigenol-3-O-beta-D-(2-O-acetyl)xylopyranoside|25-anhydrocimigenol-3-O-[2?-O-acetyl]-beta-D-xylopyranoside

25-anhydrocimicigenol-3-O-beta-D-(2-O-acetyl)xylopyranoside|25-anhydrocimigenol-3-O-[2?-O-acetyl]-beta-D-xylopyranoside

C37H56O9 (644.3924)


   

Prostaglandin A2-biotin

Prostaglandin A2-biotin

C35H56N4O5S (644.3971)


   

LRMLL

Leu Arg Met Leu Leu

C29H56N8O6S (644.4043)


   

O-Methylganoderic acid O

(2E)-5-(acetyloxy)-6-[5,12-bis(acetyloxy)-9-methoxy-2,6,6,11,15-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-14-yl]-2-methylhept-2-enoic acid

C37H56O9 (644.3924)


   

8-iso Prostaglandin A2-biotin

8-iso Prostaglandin A2-biotin

C35H56N4O5S (644.3971)


   

t-Boc-N-amido-PEG11-amine

t-Boc-N-amido-PEG11-amine

C29H60N2O13 (644.4095)


   
   
   

PA(13:0/18:2(10E,12Z)+=O(9))

PA(13:0/18:2(10E,12Z)+=O(9))

C34H61O9P (644.4053)


   

PA(18:2(10E,12Z)+=O(9)/13:0)

PA(18:2(10E,12Z)+=O(9)/13:0)

C34H61O9P (644.4053)


   

PA(13:0/18:2(9Z,11E)+=O(13))

PA(13:0/18:2(9Z,11E)+=O(13))

C34H61O9P (644.4053)


   

PA(18:2(9Z,11E)+=O(13)/13:0)

PA(18:2(9Z,11E)+=O(13)/13:0)

C34H61O9P (644.4053)


   

PA(a-13:0/18:2(10E,12Z)+=O(9))

PA(a-13:0/18:2(10E,12Z)+=O(9))

C34H61O9P (644.4053)


   

PA(18:2(10E,12Z)+=O(9)/a-13:0)

PA(18:2(10E,12Z)+=O(9)/a-13:0)

C34H61O9P (644.4053)


   

PA(a-13:0/18:2(9Z,11E)+=O(13))

PA(a-13:0/18:2(9Z,11E)+=O(13))

C34H61O9P (644.4053)


   

PA(18:2(9Z,11E)+=O(13)/a-13:0)

PA(18:2(9Z,11E)+=O(13)/a-13:0)

C34H61O9P (644.4053)


   

PA(i-13:0/18:2(10E,12Z)+=O(9))

PA(i-13:0/18:2(10E,12Z)+=O(9))

C34H61O9P (644.4053)


   

PA(18:2(10E,12Z)+=O(9)/i-13:0)

PA(18:2(10E,12Z)+=O(9)/i-13:0)

C34H61O9P (644.4053)


   

PA(i-13:0/18:2(9Z,11E)+=O(13))

PA(i-13:0/18:2(9Z,11E)+=O(13))

C34H61O9P (644.4053)


   

PA(18:2(9Z,11E)+=O(13)/i-13:0)

PA(18:2(9Z,11E)+=O(13)/i-13:0)

C34H61O9P (644.4053)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C34H61O9P (644.4053)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C34H61O9P (644.4053)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C34H61O9P (644.4053)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C34H61O9P (644.4053)


   

PA(a-13:0/18:3(10,12,15)-OH(9))

PA(a-13:0/18:3(10,12,15)-OH(9))

C34H61O9P (644.4053)


   

PA(18:3(10,12,15)-OH(9)/a-13:0)

PA(18:3(10,12,15)-OH(9)/a-13:0)

C34H61O9P (644.4053)


   

PA(a-13:0/18:3(9,11,15)-OH(13))

PA(a-13:0/18:3(9,11,15)-OH(13))

C34H61O9P (644.4053)


   

PA(18:3(9,11,15)-OH(13)/a-13:0)

PA(18:3(9,11,15)-OH(13)/a-13:0)

C34H61O9P (644.4053)


   

PA(i-13:0/18:3(10,12,15)-OH(9))

PA(i-13:0/18:3(10,12,15)-OH(9))

C34H61O9P (644.4053)


   

PA(18:3(10,12,15)-OH(9)/i-13:0)

PA(18:3(10,12,15)-OH(9)/i-13:0)

C34H61O9P (644.4053)


   

PA(i-13:0/18:3(9,11,15)-OH(13))

PA(i-13:0/18:3(9,11,15)-OH(13))

C34H61O9P (644.4053)


   

PA(18:3(9,11,15)-OH(13)/i-13:0)

PA(18:3(9,11,15)-OH(13)/i-13:0)

C34H61O9P (644.4053)


   

archaeal dolichyl N-acetyl-alpha-D-glucosaminyl phosphate(1-)

archaeal dolichyl N-acetyl-alpha-D-glucosaminyl phosphate(1-)

C33H59NO9P- (644.3927)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C34H61O9P (644.4053)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] decanoate

C34H61O9P (644.4053)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] dodecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] dodecanoate

C34H61O9P (644.4053)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C34H61O9P (644.4053)


   

MGDG O-28:8

MGDG O-28:8

C37H56O9 (644.3924)


   

PA O-18:0/13:4;O2

PA O-18:0/13:4;O2

C34H61O9P (644.4053)


   
   

PA P-18:0/13:3;O2

PA P-18:0/13:3;O2

C34H61O9P (644.4053)


   

PA 18:0/13:3;O

PA 18:0/13:3;O

C34H61O9P (644.4053)


   

PA 20:1/11:2;O

PA 20:1/11:2;O

C34H61O9P (644.4053)


   

PA 22:2/9:1;O

PA 22:2/9:1;O

C34H61O9P (644.4053)


   
   

PG O-10:0/18:4

PG O-10:0/18:4

C34H61O9P (644.4053)


   
   
   

(3s)-5-{[(1r,3as,5r,5ar,7s,9as,11s,11ar)-1-[(2r)-1-[(2s)-3,4-dimethyl-5-oxo-2h-furan-2-yl]propan-2-yl]-5,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

(3s)-5-{[(1r,3as,5r,5ar,7s,9as,11s,11ar)-1-[(2r)-1-[(2s)-3,4-dimethyl-5-oxo-2h-furan-2-yl]propan-2-yl]-5,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

C37H56O9 (644.3924)


   

(1r,3r,4r,5r,6s,10s,12s,13s,16r,18s,21r)-4,6,12,17,17-pentamethyl-8-(2-methylpropanoyl)-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-7-en-3-yl acetate

(1r,3r,4r,5r,6s,10s,12s,13s,16r,18s,21r)-4,6,12,17,17-pentamethyl-8-(2-methylpropanoyl)-18-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-7-en-3-yl acetate

C37H56O9 (644.3924)


   

5-(acetyloxy)-6-[3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

5-(acetyloxy)-6-[3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

C37H56O9 (644.3924)


   

methyl (1s,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl (1s,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C37H56O9 (644.3924)


   

(2e,5s,6s)-6-[(1r,3s,3ar,4r,5ar,7r,9as,11ar)-3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-methylhept-2-enoic acid

(2e,5s,6s)-6-[(1r,3s,3ar,4r,5ar,7r,9as,11ar)-3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-methylhept-2-enoic acid

C37H56O9 (644.3924)


   

(2e,6s)-6-[(1r,3s,3ar,4s,5ar,7r,9as,11ar)-3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-methylhept-2-enoic acid

(2e,6s)-6-[(1r,3s,3ar,4s,5ar,7r,9as,11ar)-3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-methylhept-2-enoic acid

C37H56O9 (644.3924)


   

(2e,5s,6s)-6-[(1r,3s,3ar,4r,5ar,7s,9as,11ar)-3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-methylhept-2-enoic acid

(2e,5s,6s)-6-[(1r,3s,3ar,4r,5ar,7s,9as,11ar)-3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-methylhept-2-enoic acid

C37H56O9 (644.3924)


   

4,6,12,17,17-pentamethyl-8-(2-methylpropanoyl)-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-7-en-3-yl acetate

4,6,12,17,17-pentamethyl-8-(2-methylpropanoyl)-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-7-en-3-yl acetate

C37H56O9 (644.3924)


   

(2e,5s,6s)-6-[(1r,3s,3ar,4r,5as,7r,9as,11ar)-3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-methylhept-2-enoic acid

(2e,5s,6s)-6-[(1r,3s,3ar,4r,5as,7r,9as,11ar)-3,7-bis(acetyloxy)-4-methoxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-methylhept-2-enoic acid

C37H56O9 (644.3924)


   

methyl (1r,2r,4as,6as,6br,10s,12ar)-10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl (1r,2r,4as,6as,6br,10s,12ar)-10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C37H56O9 (644.3924)


   

(1's,2r,4s,4'r,5s,6s,7'r,8'r,9's,10'e,12'e,14'r,16'e,19'r)-4,8',9'-trihydroxy-10'-(hydroxymethyl)-7'-methoxy-5,6',14',16'-tetramethyl-6-[(2e)-4-methylpent-2-en-2-yl]-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

(1's,2r,4s,4'r,5s,6s,7'r,8'r,9's,10'e,12'e,14'r,16'e,19'r)-4,8',9'-trihydroxy-10'-(hydroxymethyl)-7'-methoxy-5,6',14',16'-tetramethyl-6-[(2e)-4-methylpent-2-en-2-yl]-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

C37H56O9 (644.3924)


   

methyl 10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl 10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-2,2,6a,6b,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C37H56O9 (644.3924)


   

methyl 10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl 10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C37H56O9 (644.3924)


   

(2s,3r,4s,5r)-4,5-dihydroxy-2-{[(1s,2r,3s,4r,7r,9s,12r,14s,17r,18r,19r,21r,22r)-2-hydroxy-3,8,8,17,19-pentamethyl-22-(prop-1-en-2-yl)-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxan-3-yl acetate

(2s,3r,4s,5r)-4,5-dihydroxy-2-{[(1s,2r,3s,4r,7r,9s,12r,14s,17r,18r,19r,21r,22r)-2-hydroxy-3,8,8,17,19-pentamethyl-22-(prop-1-en-2-yl)-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxan-3-yl acetate

C37H56O9 (644.3924)


   

5-({1-[1-(3,4-dimethyl-5-oxo-2h-furan-2-yl)propan-2-yl]-5,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl}oxy)-3-hydroxy-3-methyl-5-oxopentanoic acid

5-({1-[1-(3,4-dimethyl-5-oxo-2h-furan-2-yl)propan-2-yl]-5,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl}oxy)-3-hydroxy-3-methyl-5-oxopentanoic acid

C37H56O9 (644.3924)


   

methyl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-(acetyloxy)-9,9-bis[(acetyloxy)methyl]-1-hydroxy-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C37H56O9 (644.3924)


   

4,8',9'-trihydroxy-10'-(hydroxymethyl)-7'-methoxy-5,6',14',16'-tetramethyl-6-(4-methylpent-2-en-2-yl)-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

4,8',9'-trihydroxy-10'-(hydroxymethyl)-7'-methoxy-5,6',14',16'-tetramethyl-6-(4-methylpent-2-en-2-yl)-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

C37H56O9 (644.3924)


   

4,5-dihydroxy-2-{[2-hydroxy-3,8,8,17,19-pentamethyl-22-(prop-1-en-2-yl)-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxan-3-yl acetate

4,5-dihydroxy-2-{[2-hydroxy-3,8,8,17,19-pentamethyl-22-(prop-1-en-2-yl)-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracosan-9-yl]oxy}oxan-3-yl acetate

C37H56O9 (644.3924)