Exact Mass: 639.00812

Exact Mass Matches: 639.00812

Found 2 metabolites which its exact mass value is equals to given mass value 639.00812, within given mass tolerance error 8.0E-6 dalton. Try search metabolite list with more accurate mass tolerance error 1.6E-6 dalton.

Heparan sulfate

(2S,3R,4R,5S,6R)-4-Hydroxy-6-{[(2S,3R,4S,5S,6R)-4-hydroxy-6-methoxy-5-[(sulphooxy)amino]-2-[(sulphooxy)methyl]oxan-3-yl]oxy}-3-methoxy-5-(sulphooxy)oxane-2-carboxylic acid

C14H25NO21S3 (639.00812)


Heparan sulfate (HS) is a linear polysaccharide that belongs to the class of compounds known as glycosaminoglycans (PMID: 24146040). It is found in all animal tissues and consists of repeating subunits of N-acetylglucosamine and glucuronic acid, and closely related in structure to heparin. It occurs as a proteoglycan (HSPG) in which two or three HS chains are attached to either cell surface components or the extracellular matrix (ECM), where they serve to reinforce cell adhesion (PMID: 27241222). HS synthesis starts with the transfer of xylose from UDP-xylose by the enzyme known as xylosyltransferase (XT) to specific serine residues within the protein core. Attachment of two galactose (Gal) residues by galactosyltransferases I and II (GalTI and GalTII) and glucuronic acid (GlcA) by the enzyme glucuronosyltransferase I (GlcATI) completes the formation of a tetrasaccharide linker. After attachment of the first N-acetylglucosamine (GlcNAc) residue by the enzyme known as GalNAc Transferase I (GalNAcT-I), elongation of the tetrasaccharide linker is continued by the stepwise addition of GlcA and GlcNAc residues. These are transferred from their respective UDP-sugar nucleotides. HS functions through binding to a variety of protein ligands including interferon gamma, Wnt, antithrombin III, interleukin 8, fibroblast growth factor, endostatin and others. HS thereby regulates a wide range of developmental signaling pathways such as the Wnt, Hedgehog, transforming growth factor-β, and fibroblast growth factor pathways (PMID: 15563523). Heparan sulfate plays a role in a number of biological activities, including developmental processes, angiogenesis, blood coagulation, abolishing detachment activity by GrB (Granzyme B) and tumour metastasis. A heteropolysaccharide that is similar in structure to heparin. It accumulates in individuals with mucopolysaccharidosis.