Exact Mass: 630.3914

Exact Mass Matches: 630.3914

Found 80 metabolites which its exact mass value is equals to given mass value 630.3914, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Chapso

3-{dimethyl[3-(4-{5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}pentanamido)propyl]azaniumyl}-2-hydroxypropane-1-sulfonate

C32H58N2O8S (630.3914)


   

PA(10:0/20:3(6,8,11)-OH(5))

[(2R)-3-(decanoyloxy)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(10:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(6,8,11)-OH(5)/10:0)

[(2R)-2-(decanoyloxy)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(20:3(6,8,11)-OH(5)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(6,8,11)-OH(5)/10:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/18:2(10E,12Z)+=O(9))

[(2R)-3-(dodecanoyloxy)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(12:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(10E,12Z)+=O(9)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(18:2(10E,12Z)+=O(9)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(10E,12Z)+=O(9)/12:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/18:2(9Z,11E)+=O(13))

[(2R)-3-(dodecanoyloxy)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(12:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11E)+=O(13)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(18:2(9Z,11E)+=O(13)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11E)+=O(13)/12:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/18:3(10,12,15)-OH(9))

[(2R)-3-(dodecanoyloxy)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(12:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(10,12,15)-OH(9)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(18:3(10,12,15)-OH(9)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(10,12,15)-OH(9)/12:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/18:3(9,11,15)-OH(13))

[(2R)-3-(dodecanoyloxy)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(12:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9,11,15)-OH(13)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(18:3(9,11,15)-OH(13)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9,11,15)-OH(13)/12:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/18:2(10E,12Z)+=O(9))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(i-12:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(10E,12Z)+=O(9)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(18:2(10E,12Z)+=O(9)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(10E,12Z)+=O(9)/i-12:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/18:2(9Z,11E)+=O(13))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(i-12:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11E)+=O(13)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(18:2(9Z,11E)+=O(13)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11E)+=O(13)/i-12:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/18:3(10,12,15)-OH(9))

[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(i-12:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(10,12,15)-OH(9)/i-12:0)

[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(18:3(10,12,15)-OH(9)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(10,12,15)-OH(9)/i-12:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/18:3(9,11,15)-OH(13))

[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(i-12:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9,11,15)-OH(13)/i-12:0)

[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C33H59O9P (630.3896)


PA(18:3(9,11,15)-OH(13)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9,11,15)-OH(13)/i-12:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

(-)-Pleiomutine

(-)-Pleiomutine

C41H50N4O2 (630.3934)


   

Macrophyllic acid

Macrophyllic acid

C40H54O6 (630.392)


   

Bryoferulic acid

Bryoferulic acid

C40H54O6 (630.392)


   
   

3beta-bryoferulic acid|3beta-O-trans-ferulyl-D:C-friedooleana-7,9(11)-diene-29-oic acid|3beta-[(E)-feruloyloxy]-D:C-friedooleane-7,9(11)-dien-29-oic acid

3beta-bryoferulic acid|3beta-O-trans-ferulyl-D:C-friedooleana-7,9(11)-diene-29-oic acid|3beta-[(E)-feruloyloxy]-D:C-friedooleane-7,9(11)-dien-29-oic acid

C40H54O6 (630.392)


   

kurilensoside F

(25S)-3-O-(2-O-methyl-beta-D-xylopyranosyl)-cholestane-3beta,4beta,5alpha,8,15alpha,16beta,26-heptol

C33H58O11 (630.3979)


   

Urs-11-en-28-oic acid,13-hydroxy-3-[[(2E)-3-(4-hydroxy-3-methoxyphenyl)-1-oxo-2-propenyl]oxy]-, g-lactone, (3b)- (9CI)

Urs-11-en-28-oic acid,13-hydroxy-3-[[(2E)-3-(4-hydroxy-3-methoxyphenyl)-1-oxo-2-propenyl]oxy]-, g-lactone, (3b)- (9CI)

C40H54O6 (630.392)


   

21-(E)-feruloyloxy-5alpha-cycloart-24-ene-3,23-dione

21-(E)-feruloyloxy-5alpha-cycloart-24-ene-3,23-dione

C40H54O6 (630.392)


   
   
   

Tereticornate A

Tereticornate A

C40H54O6 (630.392)


   

PA(12:0/18:2(10E,12Z)+=O(9))

PA(12:0/18:2(10E,12Z)+=O(9))

C33H59O9P (630.3896)


   

PA(18:2(10E,12Z)+=O(9)/12:0)

PA(18:2(10E,12Z)+=O(9)/12:0)

C33H59O9P (630.3896)


   

PA(12:0/18:2(9Z,11E)+=O(13))

PA(12:0/18:2(9Z,11E)+=O(13))

C33H59O9P (630.3896)


   

PA(18:2(9Z,11E)+=O(13)/12:0)

PA(18:2(9Z,11E)+=O(13)/12:0)

C33H59O9P (630.3896)


   

PA(i-12:0/18:2(10E,12Z)+=O(9))

PA(i-12:0/18:2(10E,12Z)+=O(9))

C33H59O9P (630.3896)


   

PA(18:2(10E,12Z)+=O(9)/i-12:0)

PA(18:2(10E,12Z)+=O(9)/i-12:0)

C33H59O9P (630.3896)


   

PA(i-12:0/18:2(9Z,11E)+=O(13))

PA(i-12:0/18:2(9Z,11E)+=O(13))

C33H59O9P (630.3896)


   

PA(18:2(9Z,11E)+=O(13)/i-12:0)

PA(18:2(9Z,11E)+=O(13)/i-12:0)

C33H59O9P (630.3896)


   

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

C33H59O9P (630.3896)


   

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate

C33H59O9P (630.3896)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C33H59O9P (630.3896)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C33H59O9P (630.3896)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C33H59O9P (630.3896)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C33H59O9P (630.3896)


   

PA(i-12:0/18:3(10,12,15)-OH(9))

PA(i-12:0/18:3(10,12,15)-OH(9))

C33H59O9P (630.3896)


   

PA(18:3(10,12,15)-OH(9)/i-12:0)

PA(18:3(10,12,15)-OH(9)/i-12:0)

C33H59O9P (630.3896)


   

PA(i-12:0/18:3(9,11,15)-OH(13))

PA(i-12:0/18:3(9,11,15)-OH(13))

C33H59O9P (630.3896)


   

PA(18:3(9,11,15)-OH(13)/i-12:0)

PA(18:3(9,11,15)-OH(13)/i-12:0)

C33H59O9P (630.3896)


   

methyl (1S,9R,16S,18R,21S)-6-[(15R,17S,19R)-15-ethyl-1,11-diazapentacyclo[9.6.2.02,7.08,18.015,19]nonadeca-2,4,6,8(18)-tetraen-17-yl]-2-methyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylate

methyl (1S,9R,16S,18R,21S)-6-[(15R,17S,19R)-15-ethyl-1,11-diazapentacyclo[9.6.2.02,7.08,18.015,19]nonadeca-2,4,6,8(18)-tetraen-17-yl]-2-methyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylate

C41H50N4O2 (630.3934)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C33H59O9P (630.3896)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] undecanoate

C33H59O9P (630.3896)


   
   
   

PA P-18:0/12:3;O2

PA P-18:0/12:3;O2

C33H59O9P (630.3896)


   

PA P-18:1/12:2;O2

PA P-18:1/12:2;O2

C33H59O9P (630.3896)


   

PA 18:0/12:3;O

PA 18:0/12:3;O

C33H59O9P (630.3896)


   

PA 22:0/8:3;O

PA 22:0/8:3;O

C33H59O9P (630.3896)


   

PA 22:2/8:1;O

PA 22:2/8:1;O

C33H59O9P (630.3896)


   
   
   
   

ST 27:0;O6;Hex

ST 27:0;O6;Hex

C33H58O11 (630.3979)


   

n-{3-[(2r,5r,8s,11r,14s)-3,6,9,12,15-pentahydroxy-14-[(4-hydroxyphenyl)methyl]-5,11-diisopropyl-8-(2-methylpropyl)-1,4,7,10,13-pentaazacyclopentadeca-1(15),3,6,9,12-pentaen-2-yl]propyl}guanidine

n-{3-[(2r,5r,8s,11r,14s)-3,6,9,12,15-pentahydroxy-14-[(4-hydroxyphenyl)methyl]-5,11-diisopropyl-8-(2-methylpropyl)-1,4,7,10,13-pentaazacyclopentadeca-1(15),3,6,9,12-pentaen-2-yl]propyl}guanidine

C31H50N8O6 (630.3853)


   

n-[(2s,3s)-2-[(s)-hydroxy({[(1s)-1-[(3s)-8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl]-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl]-13-methyltetradecanimidic acid

n-[(2s,3s)-2-[(s)-hydroxy({[(1s)-1-[(3s)-8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl]-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl]-13-methyltetradecanimidic acid

C35H54N2O8 (630.388)


   

(2r,4as,6as,8ar,10s,12as,14as,14br)-10-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-2,4a,6a,9,9,12a,14a-heptamethyl-1,3,4,5,6,8,8a,10,11,12,14,14b-dodecahydropicene-2-carboxylic acid

(2r,4as,6as,8ar,10s,12as,14as,14br)-10-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-2,4a,6a,9,9,12a,14a-heptamethyl-1,3,4,5,6,8,8a,10,11,12,14,14b-dodecahydropicene-2-carboxylic acid

C40H54O6 (630.392)


   

2,2'-dihydroxy-1,1'-diisopropyl-4b,4'b,8,8'-tetramethyl-5h,5'h,6h,6'h,7h,7'h,8ah,8'ah,9h,9'h,10h,10'h-[3,3'-biphenanthrene]-8,8'-dicarboxylic acid

2,2'-dihydroxy-1,1'-diisopropyl-4b,4'b,8,8'-tetramethyl-5h,5'h,6h,6'h,7h,7'h,8ah,8'ah,9h,9'h,10h,10'h-[3,3'-biphenanthrene]-8,8'-dicarboxylic acid

C40H54O6 (630.392)


   

(2r,4as,6as,8ar,10r,12as,14as,14br)-10-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-2,4a,6a,9,9,12a,14a-heptamethyl-1,3,4,5,6,8,8a,10,11,12,14,14b-dodecahydropicene-2-carboxylic acid

(2r,4as,6as,8ar,10r,12as,14as,14br)-10-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-2,4a,6a,9,9,12a,14a-heptamethyl-1,3,4,5,6,8,8a,10,11,12,14,14b-dodecahydropicene-2-carboxylic acid

C40H54O6 (630.392)


   

n-{2-[hydroxy({[1-(8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl)-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl}-13-methyltetradecanimidic acid

n-{2-[hydroxy({[1-(8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl)-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl}-13-methyltetradecanimidic acid

C35H54N2O8 (630.388)


   

(1s,4s,5r,10s,13s,17s)-4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(1s,4s,5r,10s,13s,17s)-4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H54O6 (630.392)


   

(1s,4s,5r,8r,10s,13s,14r,17s,18r,19s,20r)-4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(1s,4s,5r,8r,10s,13s,14r,17s,18r,19s,20r)-4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H54O6 (630.392)


   

7-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-1-(7-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-2,3,3b,5a,6-pentol

7-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-1-(7-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-2,3,3b,5a,6-pentol

C33H58O11 (630.3979)


   

n-(3-{3,6,9,12,15-pentahydroxy-14-[(4-hydroxyphenyl)methyl]-5,11-diisopropyl-8-(2-methylpropyl)-1,4,7,10,13-pentaazacyclopentadeca-1(15),3,6,9,12-pentaen-2-yl}propyl)guanidine

n-(3-{3,6,9,12,15-pentahydroxy-14-[(4-hydroxyphenyl)methyl]-5,11-diisopropyl-8-(2-methylpropyl)-1,4,7,10,13-pentaazacyclopentadeca-1(15),3,6,9,12-pentaen-2-yl}propyl)guanidine

C31H50N8O6 (630.3853)


   

(4bs,4'bs,8s,8's)-2,2'-dihydroxy-1,1'-diisopropyl-4b,4'b,8,8'-tetramethyl-5h,5'h,6h,6'h,7h,7'h,8ah,8'ah,9h,9'h,10h,10'h-[3,3'-biphenanthrene]-8,8'-dicarboxylic acid

(4bs,4'bs,8s,8's)-2,2'-dihydroxy-1,1'-diisopropyl-4b,4'b,8,8'-tetramethyl-5h,5'h,6h,6'h,7h,7'h,8ah,8'ah,9h,9'h,10h,10'h-[3,3'-biphenanthrene]-8,8'-dicarboxylic acid

C40H54O6 (630.392)


   

(4bs,4'bs,8s,8's,8ar,8'ar)-2,2'-dihydroxy-1,1'-diisopropyl-4b,4'b,8,8'-tetramethyl-5h,5'h,6h,6'h,7h,7'h,8ah,8'ah,9h,9'h,10h,10'h-[3,3'-biphenanthrene]-8,8'-dicarboxylic acid

(4bs,4'bs,8s,8's,8ar,8'ar)-2,2'-dihydroxy-1,1'-diisopropyl-4b,4'b,8,8'-tetramethyl-5h,5'h,6h,6'h,7h,7'h,8ah,8'ah,9h,9'h,10h,10'h-[3,3'-biphenanthrene]-8,8'-dicarboxylic acid

C40H54O6 (630.392)


   

10-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-2,4a,6a,9,9,12a,14a-heptamethyl-1,3,4,5,6,8,8a,10,11,12,14,14b-dodecahydropicene-2-carboxylic acid

10-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-2,4a,6a,9,9,12a,14a-heptamethyl-1,3,4,5,6,8,8a,10,11,12,14,14b-dodecahydropicene-2-carboxylic acid

C40H54O6 (630.392)


   

methyl (1s,9s,16s,18r,21r)-6-[(15s,17r,19r)-15-ethyl-1,11-diazapentacyclo[9.6.2.0²,⁷.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-2,4,6,8(18)-tetraen-17-yl]-2-methyl-2,12-diazahexacyclo[14.2.2.1⁹,¹².0¹,⁹.0³,⁸.0¹⁶,²¹]henicosa-3,5,7-triene-18-carboxylate

methyl (1s,9s,16s,18r,21r)-6-[(15s,17r,19r)-15-ethyl-1,11-diazapentacyclo[9.6.2.0²,⁷.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-2,4,6,8(18)-tetraen-17-yl]-2-methyl-2,12-diazahexacyclo[14.2.2.1⁹,¹².0¹,⁹.0³,⁸.0¹⁶,²¹]henicosa-3,5,7-triene-18-carboxylate

C41H50N4O2 (630.3934)


   

(1r,2r,3r,3as,3bs,5as,6s,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-1-[(2r,6s)-7-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-2,3,3b,5a,6-pentol

(1r,2r,3r,3as,3bs,5as,6s,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-1-[(2r,6s)-7-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-2,3,3b,5a,6-pentol

C33H58O11 (630.3979)


   

4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H54O6 (630.392)


   

(4br,4'bs,8r,8's,8ar,8'as)-2,2'-dihydroxy-1,1'-diisopropyl-4b,4'b,8,8'-tetramethyl-5h,5'h,6h,6'h,7h,7'h,8ah,8'ah,9h,9'h,10h,10'h-[3,3'-biphenanthrene]-8,8'-dicarboxylic acid

(4br,4'bs,8r,8's,8ar,8'as)-2,2'-dihydroxy-1,1'-diisopropyl-4b,4'b,8,8'-tetramethyl-5h,5'h,6h,6'h,7h,7'h,8ah,8'ah,9h,9'h,10h,10'h-[3,3'-biphenanthrene]-8,8'-dicarboxylic acid

C40H54O6 (630.392)