Exact Mass: 630.3184
Exact Mass Matches: 630.3184
Found 20 metabolites which its exact mass value is equals to given mass value 630.3184
,
within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error
0.0002 dalton.
(R)-6'-O-(4-Geranyloxy-2-hydroxycinnamoyl)-marmin
(R)-6-O-(4-Geranyloxy-2-hydroxycinnamoyl)-marmin is found in citrus. (R)-6-O-(4-Geranyloxy-2-hydroxycinnamoyl)-marmin is a constituent of Citrus hassaku juice oil. Constituent of Citrus hassaku juice oil. (R)-6-O-(4-Geranyloxy-2-hydroxycinnamoyl)-marmin is found in citrus.
Gambogenic Acid
gambogenic acid
Gambogenic acid is an active ingredient in gamboge, with anticancer activity. Gambogenic acid acts as an effective inhibitor of EZH2, specifically and covalently binds to Cys668 within the EZH2-SET domain, and induces EZH2 ubiquitination[1]. Gambogenic acid is an active ingredient in gamboge, with anticancer activity. Gambogenic acid acts as an effective inhibitor of EZH2, specifically and covalently binds to Cys668 within the EZH2-SET domain, and induces EZH2 ubiquitination[1].
Gambogenic
Gambogenic acid is an active ingredient in gamboge, with anticancer activity. Gambogenic acid acts as an effective inhibitor of EZH2, specifically and covalently binds to Cys668 within the EZH2-SET domain, and induces EZH2 ubiquitination[1]. Gambogenic acid is an active ingredient in gamboge, with anticancer activity. Gambogenic acid acts as an effective inhibitor of EZH2, specifically and covalently binds to Cys668 within the EZH2-SET domain, and induces EZH2 ubiquitination[1].
dimethyl 2,3-bis[5-(3,7-dimethylocta-2,6-dienyl)-3,6-dioxocyclohexa-1,4-dienyl]succinate|lettowiaquinone
(R)-6-O-(4-Geranyloxy-2-hydroxy)-cinnamoylmarmin
L-Urobilin
L-Urobilin or Stercobilin is a byproduct of bilirubin degradation. It is a tetrapyrrole chemical compound, responsible for the typical brown color of human feces. It is created by bacterial action on bilirubin and subsequent oxidation. In plasma virtually all the bilirubin is tightly bound to plasma proteins, largely albumin, because it is only sparingly soluble in aqueous solutions at physiological pH. In the sinusoids unconjugated bilirubin dissocates from albumin, enters the liver cells across the cell membrane through non-ionic diffusion to the smooth endoplasmatic reticulum, where it is converted to a water-soluble ester glucuronide by bilirubin UDP-glucuronyl transferase. Following conjugation, bilirubin is transferred rapidly across the canalicular membrane into the bile canaliculi. In the intestinal tract bilirubin is reduced to urobilinogen, which is subsequently reabsorbed to some extent into the enterohepatic circulation, removed from plasma by the liver and excreted unchanged in the bile. The residual part of urobilinogen is further reduced to urobilin, stercobilin and dipyrrolmethenes and excreted in the feces. [HMDB]