Exact Mass: 625.3462

Exact Mass Matches: 625.3462

Found 8 metabolites which its exact mass value is equals to given mass value 625.3462, within given mass tolerance error 0.0002 dalton. Try search metabolite list with more accurate mass tolerance error 4.0E-5 dalton.

Glycochenodeoxycholic acid 3-glucuronide

(2S,3S,4S,5R,6R)-6-[[(3R,5R,7R,8R,9S,10S,13R,14S)-17-[(2R)-5-(carboxymethylamino)-5-oxopentan-2-yl]-7-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C32H51NO11 (625.3462)


Glycochenodeoxycholic acid (GCDC)induced the mitochondrial permeability transition (MPT) in a dose-dependent manner, which was inhibited by cyclosporin A, alpha-tocopherol, beta-carotene and idebenone. GCDC stimulated reactive oxygen species generation and release of cytochrome c and apoptosis-inducing factor, which were significantly inhibited by the antioxidants, cyclosporin A, and tauroursodeoxycholic acid. mitochondrial pathways of cell death are stimulated in human hepatic mitochondria exposed to GCDC consistent with the role of mitochondrial dysfunction in the pathogenesis of cholestatic liver injury. (16056106) [HMDB] Glycochenodeoxycholic acid (GCDC)induced the mitochondrial permeability transition (MPT) in a dose-dependent manner, which was inhibited by cyclosporin A, alpha-tocopherol, beta-carotene and idebenone. GCDC stimulated reactive oxygen species generation and release of cytochrome c and apoptosis-inducing factor, which were significantly inhibited by the antioxidants, cyclosporin A, and tauroursodeoxycholic acid. mitochondrial pathways of cell death are stimulated in human hepatic mitochondria exposed to GCDC consistent with the role of mitochondrial dysfunction in the pathogenesis of cholestatic liver injury. (16056106).

   
   

Glycochenodeoxycholic acid 3-glucuronide

Glycochenodeoxycholic acid 3-glucuronide

C32H51NO11 (625.3462)


   

(3a,5b,7b)-24-[(carboxymethyl)amino]-7-hydroxy-24-oxocholan-3-yl-b-D-glucopyranosiduronic acid,

(3a,5b,7b)-24-[(carboxymethyl)amino]-7-hydroxy-24-oxocholan-3-yl-b-D-glucopyranosiduronic acid,

C32H51NO11 (625.3462)


   

ST 24:2;O6;HexNAc

ST 24:2;O6;HexNAc

C32H51NO11 (625.3462)


   

(2e,4e,11r)-12-[(4s,4ar,6r,8s,8ar)-4-{[(2r)-1,2-dihydroxy-2-[(2r,5r,6r)-2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl]ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]-11-hydroxydodeca-2,4-dienoic acid

(2e,4e,11r)-12-[(4s,4ar,6r,8s,8ar)-4-{[(2r)-1,2-dihydroxy-2-[(2r,5r,6r)-2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl]ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]-11-hydroxydodeca-2,4-dienoic acid

C32H51NO11 (625.3462)


   

(2e,4e,11r)-12-[(4s,4as,6r,8s,8ar)-4-{[(2r)-1,2-dihydroxy-2-[(2r,5r,6r)-2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl]ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]-11-hydroxydodeca-2,4-dienoic acid

(2e,4e,11r)-12-[(4s,4as,6r,8s,8ar)-4-{[(2r)-1,2-dihydroxy-2-[(2r,5r,6r)-2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl]ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]-11-hydroxydodeca-2,4-dienoic acid

C32H51NO11 (625.3462)


   

12-(4-{[1,2-dihydroxy-2-(2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl)ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl)-11-hydroxydodeca-2,4-dienoic acid

12-(4-{[1,2-dihydroxy-2-(2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl)ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl)-11-hydroxydodeca-2,4-dienoic acid

C32H51NO11 (625.3462)