Exact Mass: 616.3447518
Exact Mass Matches: 616.3447518
Found 140 metabolites which its exact mass value is equals to given mass value 616.3447518
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Goshonoside F6
Goshonoside F6 is found in fruits. Goshonoside F6 is a constituent of Rubus foliolosus (Ceylon raspberry). Constituent of Rubus foliolosus (Ceylon raspberry). Goshonoside F6 is found in fruits.
17-Dimethylaminogeldanamycin
PA(8:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PA(8:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/8:0)
PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/8:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PA(8:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/8:0)
PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/8:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PA(8:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/8:0)
PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/8:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
Ile Ile Trp Trp
Ile Leu Trp Trp
Ile Trp Ile Trp
Ile Trp Leu Trp
Ile Trp Trp Ile
Ile Trp Trp Leu
Lys Gln Arg Trp
Lys Gln Trp Arg
Lys Arg Gln Trp
Lys Arg Trp Gln
Lys Trp Gln Arg
Lys Trp Arg Gln
Leu Ile Trp Trp
Leu Leu Trp Trp
Leu Trp Ile Trp
Leu Trp Leu Trp
Leu Trp Trp Ile
Leu Trp Trp Leu
Gln Lys Arg Trp
Gln Lys Trp Arg
Gln Arg Lys Trp
Gln Arg Trp Lys
Gln Trp Lys Arg
Gln Trp Arg Lys
Arg Lys Gln Trp
Arg Lys Trp Gln
Arg Gln Lys Trp
Arg Gln Trp Lys
Arg Trp Lys Gln
Arg Trp Gln Lys
Trp Ile Ile Trp
Trp Ile Leu Trp
Trp Ile Trp Ile
Trp Ile Trp Leu
Trp Lys Gln Arg
Trp Lys Arg Gln
Trp Leu Ile Trp
Trp Leu Leu Trp
Trp Leu Trp Ile
Trp Leu Trp Leu
Trp Gln Lys Arg
Trp Gln Arg Lys
Trp Arg Lys Gln
Trp Arg Gln Lys
Trp Trp Ile Ile
Trp Trp Ile Leu
Trp Trp Leu Ile
Trp Trp Leu Leu
Goshonoside F6
Alvespimycin
C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Ile-Leu-Trp-Trp
A tetrapeptide composed of L-isoleucine, L-leucine and two L-tryptophan units joined in sequence by peptide linkages.
4,4,4-trifluoro-N-[[(3R,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3R,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[(3S,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3R,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3R,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[[(3S,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3R,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[(3S,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3S,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3S,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3S,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3R,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3S,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3R,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3R,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3S,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3S,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3R,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[(3R,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo-(propan-2-ylamino)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]butanamide
4,4,4-trifluoro-N-[[(3R,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3S,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3R,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3R,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3S,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3R,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3S,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3S,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3S,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
4,4,4-trifluoro-N-[[(3S,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-16-[[oxo-(propan-2-ylamino)methyl]amino]-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbutanamide
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
(2r,3r,4s,5s,6r)-2-{[(1s,2r,4as,5r,8as)-2-hydroxy-5-[(3e)-5-hydroxy-3-methylpent-3-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalen-1-yl]methoxy}-6-({[(2r,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2r,3s,4s,5r,6r)-2-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-{[(1r,4s,5s,9r,10r,13s,14r)-14-hydroxy-14-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl]methoxy}oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(2r,3s,3ar,5ar,7s,9ar,9br)-3-hydroxy-2-(3-hydroxyprop-1-en-2-yl)-6,6,9a-trimethyl-decahydro-1h-cyclopenta[a]naphthalen-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
{[(4e,8s,9s,10e,12s,13r,14s,16r)-19-{[2-(dimethylamino)ethyl]amino}-3,13-dihydroxy-8,14-dimethoxy-4,10,12,16-tetramethyl-20,22-dioxo-2-azabicyclo[16.3.1]docosa-1(21),2,4,6,10,18-hexaen-9-yl]oxy}methanimidic acid
(2r,3r,4s,5r,6r)-2-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-{[(1s,4s,5r,9s,10s,13r,14s)-14-hydroxy-14-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl]methoxy}oxane-3,4,5-triol
1,6,13,17,23,27-hexahydroxy-1,6,12,17,23,28-hexaazacyclotritriaconta-12,27-diene-2,5,16,24-tetrone
C27H48N6O10 (616.3431747999999)