Exact Mass: 610.4683

Exact Mass Matches: 610.4683

Found 57 metabolites which its exact mass value is equals to given mass value 610.4683, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

DG(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(9Z)-tetradec-9-enoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C39H62O5 (610.4597)


DG(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propan-2-yl (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C39H62O5 (610.4597)


DG(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C39H62O5 (610.4597)


DG(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C39H62O5 (610.4597)


DG(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C39H62O5 (610.4597)


DG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)/0:0)

(2S)-3-hydroxy-2-[(9Z)-tetradec-9-enoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C39H62O5 (610.4597)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(14:1n5/0:0/22:6n3)

(2R)-2-Hydroxy-3-[(5Z)-tetradec-5-enoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid

C39H62O5 (610.4597)


DG(14:1n5/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:1n5/0:0/22:6n3), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The myristoleic acid moiety is derived from milk fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n6/0:0/18:4n3)

(2R)-2-Hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoic acid

C39H62O5 (610.4597)


DG(18:3n6/0:0/18:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n6/0:0/18:4n3), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-3 position. The g-linolenic acid moiety is derived from animal fats, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n3/0:0/18:4n3)

(2R)-2-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C39H62O5 (610.4597)


DG(18:3n3/0:0/18:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n3/0:0/18:4n3), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-3 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

belamcandaquinone D

belamcandaquinone D

C39H62O5 (610.4597)


   

Diglyceride

1-Stearidonoyl-2-alpha-linolenoyl-sn-glycerol

C39H62O5 (610.4597)


   

DG 36:7

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycerol

C39H62O5 (610.4597)


   

(1-decanoyloxy-3-hydroxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

(1-decanoyloxy-3-hydroxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C39H62O5 (610.4597)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C39H62O5 (610.4597)


   

[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C39H62O5 (610.4597)


   

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C39H62O5 (610.4597)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H62O5 (610.4597)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C39H62O5 (610.4597)


   

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

C39H62O5 (610.4597)


   

(1-hydroxy-3-octanoyloxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

(1-hydroxy-3-octanoyloxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C39H62O5 (610.4597)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[2-[(E)-tetradec-9-enoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-tetradec-9-enoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C39H62O5 (610.4597)


   

[1-carboxy-3-[2-decanoyloxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-decanoyloxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H62O5 (610.4597)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[(2S)-1-hydroxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-hydroxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C39H62O5 (610.4597)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H62O5 (610.4597)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C39H62O5 (610.4597)


   

[1-carboxy-3-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H62O5 (610.4597)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C39H62O5 (610.4597)


   

[1-carboxy-3-[3-[(E)-tetradec-9-enoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-tetradec-9-enoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[(2S)-3-hydroxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-hydroxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C39H62O5 (610.4597)


   

[1-carboxy-3-[3-decanoyloxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[3-heptanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-heptanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-propanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-propanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[3-[3-butanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-1-carboxypropyl]-trimethylazanium

[3-[3-butanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-1-carboxypropyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[3-hexanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-hexanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

[1-carboxy-3-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium

C35H64NO7+ (610.4683)


   

1-(9Z-tetradecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

1-(9Z-tetradecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C39H62O5 (610.4597)


   

DG(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0)

DG(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0)

C39H62O5 (610.4597)


   

TG(36:7)

TG(14:1(1)_11:3_11:3)

C39H62O5 (610.4597)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

DG 14:1_22:6

DG 14:1_22:6

C39H62O5 (610.4597)


   

DG 18:3_18:4

DG 18:3_18:4

C39H62O5 (610.4597)


   
   

2-butyl-11-({4-methoxy-1h,1'h-[2,2'-bipyrrol]-5-yl}(5-undecylpyrrol-2-ylidene)methyl)-10-azabicyclo[7.2.1]dodeca-1(11),9(12)-diene

2-butyl-11-({4-methoxy-1h,1'h-[2,2'-bipyrrol]-5-yl}(5-undecylpyrrol-2-ylidene)methyl)-10-azabicyclo[7.2.1]dodeca-1(11),9(12)-diene

C40H58N4O (610.461)


   

2-(2,4-dihydroxy-6-tridecylphenyl)-5-methoxy-3-tridecylcyclohexa-2,5-diene-1,4-dione

2-(2,4-dihydroxy-6-tridecylphenyl)-5-methoxy-3-tridecylcyclohexa-2,5-diene-1,4-dione

C39H62O5 (610.4597)