Exact Mass: 606.4260328
Exact Mass Matches: 606.4260328
Found 87 metabolites which its exact mass value is equals to given mass value 606.4260328
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
PA(10:0/19:0)
PA(10:0/19:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/19:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of nonadecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(15:0/14:0)
PA(15:0/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/14:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(21:0/8:0)
PA(21:0/8:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/8:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of caprylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/21:0)
PA(8:0/21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/21:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of heneicosylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(10:0/i-19:0)
PA(10:0/i-19:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/i-19:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of isononadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/a-21:0)
PA(8:0/a-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/a-21:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of anteisoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/i-21:0)
PA(8:0/i-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/i-21:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of isoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/i-16:0)
PA(a-13:0/i-16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-16:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-21:0/8:0)
PA(a-21:0/8:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/8:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of caprylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/a-17:0)
PA(i-12:0/a-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/a-17:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/i-17:0)
PA(i-12:0/i-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/i-17:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/i-16:0)
PA(i-13:0/i-16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-16:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-14:0/a-15:0)
PA(i-14:0/a-15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-14:0/a-15:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of anteisopentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-14:0/i-15:0)
PA(i-14:0/i-15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-14:0/i-15:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of isopentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-21:0/8:0)
PA(i-21:0/8:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/8:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of caprylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
21alpha-hydroxyserrat-14-en-3beta-yl p-dihydrocaffeate|Phlegmanol A
WURCS=2.0/1,1,0/[hx12xh_3-6_1*OCCOCCCCCCCCCCCCCCCCCC/6=O_2*OCCO_4*OCCO_5*OCCO]/1
2,3-dihydroxypropyl [3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-hydroxypropyl] hydrogen phosphate
(1-Acetyloxy-3-phosphonooxypropan-2-yl) heptacosanoate
(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate
(1-Butanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate
(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) icosanoate
(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) docosanoate
(1-Octanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate
(1-Phosphonooxy-3-propanoyloxypropan-2-yl) hexacosanoate
(1-Pentanoyloxy-3-phosphonooxypropan-2-yl) tetracosanoate
(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) heptadecanoate
(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) hexadecanoate
(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) pentadecanoate
(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) octadecanoate
[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
(1-Decanoyloxy-3-phosphonooxypropan-2-yl) nonadecanoate
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] octadecanoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] octadecanoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-2-decanoyloxy-3-phosphonooxypropyl] nonadecanoate
[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate
1-pentadecanoyl-2-tetradecanoyl-glycero-3-phosphate
1-heptadecanoyl-2-lauroyl-sn-glycero-3-phosphate
A 1,2-diacyl-sn-glycerol 3-phosphate in which the phosphatidyl acyl groups at postions 1 and 2 are specified as heptadecanoyl and lauroyl respectively.