Exact Mass: 532.2342060000001
Exact Mass Matches: 532.2342060000001
Found 267 metabolites which its exact mass value is equals to given mass value 532.2342060000001
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Nomilinic acid
Nomilinic acid is found in citrus. Nomilinic acid is a constituent of grapefruit seeds
Austalide E
Austalide E is a metabolite of Aspergillus ustus. Metabolite of Aspergillus ustus.
Austalide D
Austalide D is a metabolite of Aspergillus ustu Metabolite of Aspergillus ustus.
Dehydroandrographolide succinate
PA(2:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PA(2:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/2:0)
PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/2:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(2:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PA(2:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/2:0)
PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/2:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/2:0)
PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/2:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
Dehydroandrographolidesuccinate
Dehydroandrographolide succinate, extracted from herbal medicine Andrographis paniculata (Burm f) Nees, is widely used for the treatment of viral pneumonia and viral upper respiratory tract infections because of its immunostimulatory, anti-infective and anti-inflammatory effect[1]. Dehydroandrographolide succinate, extracted from herbal medicine Andrographis paniculata (Burm f) Nees, is widely used for the treatment of viral pneumonia and viral upper respiratory tract infections because of its immunostimulatory, anti-infective and anti-inflammatory effect[1].
[3R-(3alpha,5beta,5aalpha,6alpha,7alpha,9alpha,9aalpha,10R*)]-Octahydro-5a-(hydroxymethyl)-2,2,9-trimethyl-, 6,7,10-triacetate 5-benzoate 2H-3,9a-methano-1-benzoxepin-5,6,7,10-tetrol
Ejap 10
[3R-(3alpha,5beta,5aalpha,6alpha,9beta,9aalpha,10R*)]-5a-[(Acetyloxy)methyl]octahydro-2,2,9-trimethyl-2H-3,9a-methano-1-benzoxepin-5,6,9,10-tetrol 5,10-diacetate 6-benzoate
Rzedowskin A
[3R-(3alpha,4beta,5alpha,5aalpha,6alpha,9beta,9aalpha,10R*)]-Octahydro-2,2,5a,9-tetramethyl-, 4,5,10-triacetate 6-benzoate 2H-3,9a-methano-1-benzoxepin-4,5,6,9,10-pentol
(1S,4S,5S,6R,7R,9S,10S)-9-benzoyloxy-1,6,15-triacetoxy-4-hydroxy-dihydro-beta-agarofuran|9-Benzoyl,1,6,14-tri-Ac-(1alpha,4beta,6beta,9beta)-1,4,6,8,14-Pentahydroxydihydro-beta-agarofuran
6beta,9beta,14-Triacetoxy-1alpha-benzoyloxy-4beta-hydroxydihydro-beta-agarofuran
(1S,4S,5S,6R,7R,9S,10S)-1,6,15-triacetoxy-9-benzoyloxy-4-hydroxy-8-oxo-dihydro-beta-agarofuran
(1alpha,2alpha,8beta,9beta)-2,8,14-tris(acetyloxy)-9-(benzoyloxy)-1-hydroxydihydro-beta-agarofuran|rel-5a-[(acetyloxy)methyl]octahydro-2,2,9-trimethyl-2H-3,9a-methano-1-benzoxepin-4,5,6,7-tetrol 4,7-diacetate 5-benzoate
12-Oxo-2beta,3beta-di-O-acetyl-5beta,11alpha-dihydroxybufalin
12-hydroxyamoorastatone|12alpha-hydroxyamoorastatone|isochuanliansu
His Val Tyr Asp
C28H36O10_2-Hydroxy-13,20-dimethoxy-4,7,17,22,22-pentamethyl-11-oxo-5,10,21,23-tetraoxahexacyclo[18.2.1.0~1,17~.0~4,16~.0~6,14~.0~8,12~]tricosa-6(14),7,12-trien-18-yl acetate
Ala Ala Trp Trp
Ala Glu Gln Trp
Ala Glu Trp Gln
Ala Gln Glu Trp
Ala Gln Trp Glu
Ala Trp Ala Trp
Ala Trp Glu Gln
Ala Trp Gln Glu
Ala Trp Trp Ala
Asp Gly Arg Trp
C23H32N8O7 (532.2393841999999)
Asp Gly Trp Arg
C23H32N8O7 (532.2393841999999)
Asp His Val Tyr
Asp His Tyr Val
Asp Asn Val Trp
Asp Asn Trp Val
Asp Arg Gly Trp
C23H32N8O7 (532.2393841999999)
Asp Arg Trp Gly
C23H32N8O7 (532.2393841999999)
Asp Val His Tyr
Asp Val Asn Trp
Asp Val Trp Asn
Asp Val Tyr His
Asp Trp Gly Arg
C23H32N8O7 (532.2393841999999)
Asp Trp Asn Val
Asp Trp Arg Gly
C23H32N8O7 (532.2393841999999)
Asp Trp Val Asn
Asp Tyr His Val
Asp Tyr Val His
Glu Ala Gln Trp
Glu Ala Trp Gln
Glu Phe His Thr
Glu Phe Thr His
Glu His Phe Thr
Glu His Thr Phe
Glu Gln Ala Trp
Glu Gln Trp Ala
Glu Thr Phe His
Glu Thr His Phe
Glu Trp Ala Gln
Glu Trp Gln Ala
Phe Glu His Thr
Phe Glu Thr His
Phe Phe Gly Tyr
Phe Phe Tyr Gly
Phe Gly Phe Tyr
Phe Gly Tyr Phe
Phe His Glu Thr
Phe His Thr Glu
Phe Thr Glu His
Phe Thr His Glu
Phe Tyr Phe Gly
Phe Tyr Gly Phe
Gly Asp Arg Trp
C23H32N8O7 (532.2393841999999)
Gly Asp Trp Arg
C23H32N8O7 (532.2393841999999)
Gly Phe Phe Tyr
Gly Phe Tyr Phe
Gly Arg Asp Trp
C23H32N8O7 (532.2393841999999)
Gly Arg Trp Asp
C23H32N8O7 (532.2393841999999)
Gly Trp Asp Arg
C23H32N8O7 (532.2393841999999)
Gly Trp Arg Asp
C23H32N8O7 (532.2393841999999)
Gly Tyr Phe Phe
His Asp Val Tyr
His Asp Tyr Val
His Glu Phe Thr
His Glu Thr Phe
His Phe Glu Thr
His Phe Thr Glu
His Thr Glu Phe
His Thr Phe Glu
His Val Asp Tyr
His Tyr Asp Val
His Tyr Val Asp
Asn Asp Val Trp
Asn Asp Trp Val
Asn Val Asp Trp
Asn Val Trp Asp
Asn Trp Asp Val
Asn Trp Val Asp
Gln Ala Glu Trp
Gln Ala Trp Glu
Gln Glu Ala Trp
Gln Glu Trp Ala
Gln Trp Ala Glu
Gln Trp Glu Ala
Arg Asp Gly Trp
C23H32N8O7 (532.2393841999999)
Arg Asp Trp Gly
C23H32N8O7 (532.2393841999999)
Arg Gly Asp Trp
C23H32N8O7 (532.2393841999999)
Arg Gly Trp Asp
C23H32N8O7 (532.2393841999999)
Arg Trp Asp Gly
C23H32N8O7 (532.2393841999999)
Arg Trp Gly Asp
C23H32N8O7 (532.2393841999999)
Thr Glu Phe His
Thr Glu His Phe
Thr Phe Glu His
Thr Phe His Glu
Thr His Glu Phe
Thr His Phe Glu
Val Asp His Tyr
Val Asp Asn Trp
Val Asp Trp Asn
Val Asp Tyr His
Val His Asp Tyr
Val His Tyr Asp
Val Asn Asp Trp
Val Asn Trp Asp
Val Trp Asp Asn
Val Trp Asn Asp
Val Tyr Asp His
Val Tyr His Asp
Trp Ala Ala Trp
Trp Ala Glu Gln
Trp Ala Gln Glu
Trp Ala Trp Ala
Trp Asp Gly Arg
C23H32N8O7 (532.2393841999999)
Trp Asp Asn Val
Trp Asp Arg Gly
C23H32N8O7 (532.2393841999999)
Trp Asp Val Asn
Trp Glu Ala Gln
Trp Glu Gln Ala
Trp Gly Asp Arg
C23H32N8O7 (532.2393841999999)
Trp Gly Arg Asp
C23H32N8O7 (532.2393841999999)
Trp Asn Asp Val
Trp Asn Val Asp
Trp Gln Ala Glu
Trp Gln Glu Ala
Trp Arg Asp Gly
C23H32N8O7 (532.2393841999999)
Trp Arg Gly Asp
C23H32N8O7 (532.2393841999999)
Trp Val Asp Asn
Trp Val Asn Asp
Trp Trp Ala Ala
Tyr Asp His Val
Tyr Asp Val His
Tyr Phe Phe Gly
Tyr Phe Gly Phe
Tyr Gly Phe Phe
Tyr His Asp Val
Tyr His Val Asp
Tyr Val Asp His
Tyr Val His Asp
Austalide D
Austalide E
NOMILINIC ACID
BENZOIC ACID, 4-[4-[(3R)-3-[[[2-OXO-2-[[3-(TRIFLUOROMETHYL)PHENYL]AMINO]ETHYL]AMINO]CARBONYL]-1-PYRROLIDINYL]-1-PIPERIDINYL]-, METHYL ESTER
Sunitinib malate
C26H33FN4O7 (532.2333160000001)
C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C93259 - VEGFR Tyrosine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C163953 - VEGFR-targeting Agent C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C164037 - PDGFR-targeting Agent C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C163999 - cKIT-targeting Agent C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C159198 - c-KIT Inhibitor C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors
Bis(tert-butoxy)bis(1-methoxy-2-methyl-2-propoxy)hafnium(IV)
C18H40O6Hf (532.2290350000001)
2-((2-((1-(2-(Dimethylamino)acetyl)-5-methoxyindolin-6-yl)amino)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-6-fluoro-N-methylbenzamide
methyl (2S,3R,4S)-3-ethyl-4-[[(1S)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl]methyl]-2-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydro-2H-pyran-5-carboxylate
4-[[2-(3-carboxypropanoyloxy)-1,4a-dimethyl-6-methylidene-5-[(E)-2-(5-oxo-2H-furan-4-yl)ethenyl]-3,4,5,7,8,8a-hexahydro-2H-naphthalen-1-yl]methoxy]-4-oxobutanoic acid
N-[(2R,4aR,12aR)-5-methyl-6-oxo-2-[2-oxo-2-[[(1R)-1-phenylethyl]amino]ethyl]-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-8-yl]-5-methyl-3-isoxazolecarboxamide
N-[(2R,4aS,12aS)-5-methyl-6-oxo-2-[2-oxo-2-(4-propan-2-ylanilino)ethyl]-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-8-yl]-5-isoxazolecarboxamide
2-[(3S,6aS,8R,10aS)-1-[(2-fluorophenyl)-oxomethyl]-3-hydroxy-3,4,6,6a,8,9,10,10a-octahydro-2H-pyrano[2,3-c][1,5]oxazocin-8-yl]-N-[(4-phenylphenyl)methyl]acetamide
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
(1r,2r,3ar,5r,13r,13as)-1,3a,13-tris(acetyloxy)-2,5,8,8-tetramethyl-12-methylidene-4,9-dioxo-1h,3h,5h,13h,13ah-cyclopenta[12]annulen-2-yl acetate
(1s,2s,5s,6s,7s,9r,12r)-5,12-bis(acetyloxy)-6-[(acetyloxy)methyl]-2-hydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-7-yl benzoate
(1s,2r,3s,5s,6s,8r,10s,11s,12r,14r,15s,16r,19s,21r)-6-(furan-3-yl)-3,12,16,19-tetrahydroxy-5,11,15-trimethyl-4-oxo-9,17-dioxahexacyclo[13.3.3.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0⁸,¹⁰]henicosan-21-yl acetate
(1s,2s,4r,5s,6r,7r,9r,12s)-5,12-bis(acetyloxy)-6-[(acetyloxy)methyl]-4-hydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-7-yl benzoate
(1r,2s,4r,5r,6s,7s,9s,12r)-4,7-bis(acetyloxy)-2,12-dihydroxy-2,6,10,10-tetramethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-5-yl (2r,3s)-3-phenyloxirane-2-carboxylate
12-hydroxyamoorastatone
{"Ingredient_id": "HBIN000872","Ingredient_name": "12-hydroxyamoorastatone","Alias": "NA","Ingredient_formula": "C28H36O10","Ingredient_Smile": "CC(=O)OC1CC(C23COC(C1(C2CC(C4(C3C(=O)C(C5(C4C(=O)CC5C6=COC=C6)C)O)C)O)C)O)O","Ingredient_weight": "532.6 g/mol","OB_score": "NA","CAS_id": "152013-84-8","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9364","PubChem_id": "101672375","DrugBank_id": "NA"}
2-hydroxy-13,20-dimethoxy-4,7,17,22,22-pentamethyl-11-oxo-5,10,21,23-tetraoxahexacyclo[18.2.1.0¹,¹⁷.0⁴,¹⁶.0⁶,¹⁴.0⁸,¹²]tricosa-6(14),7,12-trien-15-yl acetate
(1r,2r,4s,16r,17s,18r,20s)-2-hydroxy-13,20-dimethoxy-4,7,17,22,22-pentamethyl-11-oxo-5,10,21,23-tetraoxahexacyclo[18.2.1.0¹,¹⁷.0⁴,¹⁶.0⁶,¹⁴.0⁸,¹²]tricosa-6,8(12),13-trien-18-yl acetate
(1s,2s,4r,5s,6s,9s,10s,11r,13r,14r,15s,18s,20r)-6-(furan-3-yl)-4,11,15,18-tetrahydroxy-5,10,14-trimethyl-3,8-dioxo-16-oxapentacyclo[12.3.3.0¹,¹³.0²,¹⁰.0⁵,⁹]icosan-20-yl acetate
(1ar,3r,3ar,4r,5r,6r,7as)-4,5-bis(acetyloxy)-6-[(1s,6r)-6-(2-methoxy-2-oxoethyl)-1,5,5-trimethyl-4-oxocyclohex-2-en-1-yl]-3a-methyl-7-methylidene-hexahydroindeno[1,7a-b]oxirene-3-carboxylic acid
5,12-bis(acetyloxy)-6-[(acetyloxy)methyl]-2-hydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-7-yl benzoate
(1r,2r,4r,5s,6s,7s,9s,12r)-4,5,12-tris(acetyloxy)-6-(hydroxymethyl)-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-7-yl benzoate
(1r,2r,4s,16r,17s,18r,20s)-18-hydroxy-13,20-dimethoxy-4,7,17,22,22-pentamethyl-11-oxo-5,10,21,23-tetraoxahexacyclo[18.2.1.0¹,¹⁷.0⁴,¹⁶.0⁶,¹⁴.0⁸,¹²]tricosa-6,8(12),13-trien-2-yl acetate
7,8,12-tris(acetyloxy)-2-hydroxy-2,6,10,10-tetramethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-5-yl benzoate
(1r,2s,4r,5s,6r,7r,9s,12s)-4,12-bis(acetyloxy)-6-[(acetyloxy)methyl]-5-hydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-7-yl benzoate
(1r,2s,4r,5r,8r,9s,11r)-2-({[(1r,3s,5r,7s,8s,9s)-8-(acetyloxy)-9-hydroxy-2,4,6-trioxatricyclo[3.3.1.0³,⁷]nonan-5-yl]oxy}methyl)-9-formyl-13-isopropyl-5-methyltetracyclo[7.4.0.0²,¹¹.0⁴,⁸]tridec-12-ene-1-carboxylic acid
(1r,2r,4s,15s,16s,17r,20s)-2-hydroxy-13,20-dimethoxy-4,7,17,22,22-pentamethyl-11-oxo-5,10,21,23-tetraoxahexacyclo[18.2.1.0¹,¹⁷.0⁴,¹⁶.0⁶,¹⁴.0⁸,¹²]tricosa-6(14),7,12-trien-15-yl acetate
5,12-bis(acetyloxy)-6-[(acetyloxy)methyl]-8-hydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-7-yl benzoate
(1r,2s,3r,4s,6r,7r,8r,9r,12s,13s)-9,12-bis(acetyloxy)-3-(chloromethyl)-3,13-dihydroxy-6-isopropyl-9,13-dimethyl-15-oxatricyclo[6.6.1.0²,⁷]pentadecan-4-yl acetate
C26H41ClO9 (532.2438966000001)
(1r,2s,4r,5s,6r,7s,8r,9r)-5,8-bis(acetyloxy)-6-[(acetyloxy)methyl]-4-hydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-7-yl benzoate
6-(furan-3-yl)-4,11,15,18-tetrahydroxy-5,10,14-trimethyl-3,8-dioxo-16-oxapentacyclo[12.3.3.0¹,¹³.0²,¹⁰.0⁵,⁹]icosan-20-yl acetate
(1r,7ar,9s,11br)-1-(acetyloxy)-9-[(s)-furan-3-yl(hydroxy)methyl]-5,5,7a,9,11b-pentamethyl-3,7-dioxo-hexahydro-1h-spiro[naphtho[2,1-c]oxepine-8,2'-oxirane]-3'-carboxylic acid
2,9-bis(acetyloxy)-4,8,12,17-tetramethyl-5,16-dioxo-15,18-dioxatetracyclo[12.4.0.0¹,¹⁷.0³,⁸]octadeca-6,12-dien-10-yl butanoate
(1s,2s,5s,6s,7s,9r,12r)-7,12-bis(acetyloxy)-6-[(acetyloxy)methyl]-2-hydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-5-yl benzoate
4,12-bis(acetyloxy)-6-[(acetyloxy)methyl]-5-hydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-7-yl benzoate
(1s,2r,4s,5r,8r,9r,11s)-2-({[(1s,3r,5s,7r,8s,9s)-8-(acetyloxy)-9-hydroxy-2,4,6-trioxatricyclo[3.3.1.0³,⁷]nonan-5-yl]oxy}methyl)-9-formyl-13-isopropyl-5-methyltetracyclo[7.4.0.0²,¹¹.0⁴,⁸]tridec-12-ene-1-carboxylic acid
4,5-bis(acetyloxy)-6-[6-(2-methoxy-2-oxoethyl)-1,5,5-trimethyl-4-oxocyclohex-2-en-1-yl]-3a-methyl-7-methylidene-hexahydroindeno[1,7a-b]oxirene-3-carboxylic acid
(2e)-4-[(1r,5s,7r)-1-[(2s,3e,5r,6z)-7-chloro-5,9-dihydroxynona-3,6-dien-2-yl]-6-azaspiro[4.5]decan-7-yl]-2-methyl-n-(2-sulfoethyl)but-2-enimidic acid
C25H41ClN2O6S (532.2373716000001)