Exact Mass: 519.3169

Exact Mass Matches: 519.3169

Found 38 metabolites which its exact mass value is equals to given mass value 519.3169, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

(4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-Trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine

3-[(7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoyl)oxy]-4-(trimethylazaniumyl)butanoate

C29H45NO7 (519.3196)


(4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-Trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine

3-[(7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoyl)oxy]-4-(trimethylazaniumyl)butanoate

C29H45NO7 (519.3196)


(4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine

3-({10-hydroxy-12-[5-hydroxy-3-oxo-2-(pent-2-en-1-yl)cyclopentyl]dodeca-4,7,11-trienoyl}oxy)-4-(trimethylazaniumyl)butanoate

C29H45NO7 (519.3196)


(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7Z,10S,11E)-10-hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine

(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine

C29H45NO7 (519.3196)


(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7Z,10S,11E)-10-hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-[(1S,2R,5S)-5-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine

3-({3-[5-hydroxy-2-(3-hydroxytetradeca-1,5,8,11-tetraen-1-yl)-3-oxocyclopentyl]propanoyl}oxy)-4-(trimethylazaniumyl)butanoate

C29H45NO7 (519.3196)


3-[(1S,2R,5S)-5-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine is an acylcarnitine. More specifically, it is an 3-[(1S,2R,5S)-5-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-[(1S,2R,5S)-5-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine 3-[(1S,2R,5S)-5-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine

3-({3-[3-hydroxy-2-(3-hydroxytetradeca-1,5,8,11-tetraen-1-yl)-5-oxocyclopentyl]propanoyl}oxy)-4-(trimethylazaniumyl)butanoate

C29H45NO7 (519.3196)


3-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine is an acylcarnitine. More specifically, it is an 3-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine 3-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z)-6-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine

3-({6-[3-hydroxy-2-(3-hydroxyundeca-1,5,8-trien-1-yl)-5-oxocyclopentyl]hex-4-enoyl}oxy)-4-(trimethylazaniumyl)butanoate

C29H45NO7 (519.3196)


(4Z)-6-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine is an acylcarnitine. More specifically, it is an (4Z)-6-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z)-6-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z)-6-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z,7Z)-9-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine

3-({9-[3-hydroxy-2-(3-hydroxyocta-1,5-dien-1-yl)-5-oxocyclopentyl]nona-4,7-dienoyl}oxy)-4-(trimethylazaniumyl)butanoate

C29H45NO7 (519.3196)


(4Z,7Z)-9-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7Z)-9-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7Z)-9-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7Z)-9-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z,7Z,10Z)-12-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine

3-({12-[3-hydroxy-2-(3-hydroxypent-1-en-1-yl)-5-oxocyclopentyl]dodeca-4,7,10-trienoyl}oxy)-4-(trimethylazaniumyl)butanoic acid

C29H45NO7 (519.3196)


(4Z,7Z,10Z)-12-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7Z,10Z)-12-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7Z,10Z)-12-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7Z,10Z)-12-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4S,5E)-4-Hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine

3-({4-hydroxy-6-[5-hydroxy-3-oxo-2-(undeca-2,5,8-trien-1-yl)cyclopentyl]hex-5-enoyl}oxy)-4-(trimethylazaniumyl)butanoic acid

C29H45NO7 (519.3196)


(4S,5E)-4-hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine is an acylcarnitine. More specifically, it is an (4S,5E)-4-hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4S,5E)-4-hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4S,5E)-4-hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z,7S,8E)-7-Hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine

3-({7-hydroxy-9-[5-hydroxy-2-(octa-2,5-dien-1-yl)-3-oxocyclopentyl]nona-4,8-dienoyl}oxy)-4-(trimethylazaniumyl)butanoic acid

C29H45NO7 (519.3196)


(4Z,7S,8E)-7-hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7S,8E)-7-hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7S,8E)-7-hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7S,8E)-7-hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Asi-222

3-[3-(5-amino-3,4-dihydroxy-6-methyloxan-2-yl)oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C29H45NO7 (519.3196)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides

   

Phe Arg Val Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-5-carbamimidamidopentanamido]-3-methylbutanamido]-3-methylbutanoic acid

C25H41N7O5 (519.3169)


   

Phe Val Arg Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-methylbutanamido]-5-carbamimidamidopentanamido]-3-methylbutanoic acid

C25H41N7O5 (519.3169)


   

Phe Val Val Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-methylbutanamido]-3-methylbutanamido]-5-carbamimidamidopentanoic acid

C25H41N7O5 (519.3169)


   

Arg Phe Val Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-phenylpropanamido]-3-methylbutanamido]-3-methylbutanoic acid

C25H41N7O5 (519.3169)


   

Arg Val Phe Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylbutanamido]-3-phenylpropanamido]-3-methylbutanoic acid

C25H41N7O5 (519.3169)


   

Arg Val Val Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-methylbutanamido]-3-methylbutanamido]-3-phenylpropanoic acid

C25H41N7O5 (519.3169)


   

Val Phe Arg Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-phenylpropanamido]-5-carbamimidamidopentanamido]-3-methylbutanoic acid

C25H41N7O5 (519.3169)


   

Val Phe Val Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-phenylpropanamido]-3-methylbutanamido]-5-carbamimidamidopentanoic acid

C25H41N7O5 (519.3169)


   

Val Arg Phe Val

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-5-carbamimidamidopentanamido]-3-phenylpropanamido]-3-methylbutanoic acid

C25H41N7O5 (519.3169)


   

Val Arg Val Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-5-carbamimidamidopentanamido]-3-methylbutanamido]-3-phenylpropanoic acid

C25H41N7O5 (519.3169)


   

Val Val Phe Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-methylbutanamido]-3-phenylpropanamido]-5-carbamimidamidopentanoic acid

C25H41N7O5 (519.3169)


   

Val Val Arg Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]-3-methylbutanamido]-5-carbamimidamidopentanamido]-3-phenylpropanoic acid

C25H41N7O5 (519.3169)


   

(4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-Trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine

(4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-Trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine

C29H45NO7 (519.3196)


   

(4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-Trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine

(4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-Trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine

C29H45NO7 (519.3196)


   

(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine

(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine

C29H45NO7 (519.3196)


   

(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine

(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine

C29H45NO7 (519.3196)


   

3-[(1S,2R,5S)-5-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine

3-[(1S,2R,5S)-5-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine

C29H45NO7 (519.3196)


   

3-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine

3-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine

C29H45NO7 (519.3196)


   

(4Z)-6-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine

(4Z)-6-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine

C29H45NO7 (519.3196)


   

(4Z,7Z)-9-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine

(4Z,7Z)-9-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine

C29H45NO7 (519.3196)


   

(4Z,7Z,10Z)-12-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine

(4Z,7Z,10Z)-12-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine

C29H45NO7 (519.3196)


   

(4S,5E)-4-Hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine

(4S,5E)-4-Hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine

C29H45NO7 (519.3196)


   

(4Z,7S,8E)-7-Hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine

(4Z,7S,8E)-7-Hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine

C29H45NO7 (519.3196)


   
   

ST 27:3;O5;Gly

ST 27:3;O5;Gly

C29H45NO7 (519.3196)


   

ST 21:2;O2;HexNAc

ST 21:2;O2;HexNAc

C29H45NO7 (519.3196)