Exact Mass: 514.2322

Exact Mass Matches: 514.2322

Found 63 metabolites which its exact mass value is equals to given mass value 514.2322, within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error 0.0002 dalton.

PA(2:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-(acetyloxy)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(2:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/2:0)

[(2R)-2-(acetyloxy)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/2:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(2:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/2:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/2:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/2:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-3-(acetyloxy)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(2:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/2:0)

[(2R)-2-(acetyloxy)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/2:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(2:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-3-(acetyloxy)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(2:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/2:0)

[(2R)-2-(acetyloxy)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C25H39O9P (514.2332)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/2:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   

akuammidine 17-O-beta-d-glucopyranoside|methyl (19E)-17-(b-d-glucopyranosyloxy)-10-hydroxysarpagan-16-carboxylate

akuammidine 17-O-beta-d-glucopyranoside|methyl (19E)-17-(b-d-glucopyranosyloxy)-10-hydroxysarpagan-16-carboxylate

C27H34N2O8 (514.2315)


   
   

strictosidinic ketone

strictosidinic ketone

C27H34N2O8 (514.2315)


   

Cys His Lys Gln

(2S)-2-[(2S)-6-amino-2-[(2S)-2-[(2R)-2-amino-3-sulfanylpropanamido]-3-(1H-imidazol-4-yl)propanamido]hexanamido]-4-carbamoylbutanoic acid

C20H34N8O6S (514.2322)


   

Cys His Gln Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-2-[(2R)-2-amino-3-sulfanylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-4-carbamoylbutanamido]hexanoic acid

C20H34N8O6S (514.2322)


   

Cys Lys His Gln

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2R)-2-amino-3-sulfanylpropanamido]hexanamido]-3-(1H-imidazol-4-yl)propanamido]-4-carbamoylbutanoic acid

C20H34N8O6S (514.2322)


   

Cys Lys Gln His

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2R)-2-amino-3-sulfanylpropanamido]hexanamido]-4-carbamoylbutanamido]-3-(1H-imidazol-4-yl)propanoic acid

C20H34N8O6S (514.2322)


   

Cys Gln His Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-2-[(2R)-2-amino-3-sulfanylpropanamido]-4-carbamoylbutanamido]-3-(1H-imidazol-4-yl)propanamido]hexanoic acid

C20H34N8O6S (514.2322)


   

Cys Gln Lys His

(2S)-2-[(2S)-6-amino-2-[(2S)-2-[(2R)-2-amino-3-sulfanylpropanamido]-4-carbamoylbutanamido]hexanamido]-3-(1H-imidazol-4-yl)propanoic acid

C20H34N8O6S (514.2322)


   

His Cys Lys Gln

(2S)-2-[(2S)-6-amino-2-[(2R)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-sulfanylpropanamido]hexanamido]-4-carbamoylbutanoic acid

C20H34N8O6S (514.2322)


   

His Cys Gln Lys

(2S)-6-amino-2-[(2S)-2-[(2R)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-sulfanylpropanamido]-4-carbamoylbutanamido]hexanoic acid

C20H34N8O6S (514.2322)


   

His Lys Cys Gln

(2S)-2-[(2R)-2-[(2S)-6-amino-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]hexanamido]-3-sulfanylpropanamido]-4-carbamoylbutanoic acid

C20H34N8O6S (514.2322)


   

His Lys Gln Cys

(2R)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]hexanamido]-4-carbamoylbutanamido]-3-sulfanylpropanoic acid

C20H34N8O6S (514.2322)


   

His Gln Cys Lys

(2S)-6-amino-2-[(2R)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-4-carbamoylbutanamido]-3-sulfanylpropanamido]hexanoic acid

C20H34N8O6S (514.2322)


   

His Gln Lys Cys

(2R)-2-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-4-carbamoylbutanamido]hexanamido]-3-sulfanylpropanoic acid

C20H34N8O6S (514.2322)


   

Lys Cys His Gln

(2S)-4-carbamoyl-2-[(2S)-2-[(2R)-2-[(2S)-2,6-diaminohexanamido]-3-sulfanylpropanamido]-3-(1H-imidazol-4-yl)propanamido]butanoic acid

C20H34N8O6S (514.2322)


   

Lys Cys Gln His

(2S)-2-[(2S)-4-carbamoyl-2-[(2R)-2-[(2S)-2,6-diaminohexanamido]-3-sulfanylpropanamido]butanamido]-3-(1H-imidazol-4-yl)propanoic acid

C20H34N8O6S (514.2322)


   

Lys His Cys Gln

(2S)-4-carbamoyl-2-[(2R)-2-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-(1H-imidazol-4-yl)propanamido]-3-sulfanylpropanamido]butanoic acid

C20H34N8O6S (514.2322)


   

Lys His Gln Cys

(2R)-2-[(2S)-4-carbamoyl-2-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-(1H-imidazol-4-yl)propanamido]butanamido]-3-sulfanylpropanoic acid

C20H34N8O6S (514.2322)


   

Lys Gln Cys His

(2S)-2-[(2R)-2-[(2S)-4-carbamoyl-2-[(2S)-2,6-diaminohexanamido]butanamido]-3-sulfanylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C20H34N8O6S (514.2322)


   

Lys Gln His Cys

(2R)-2-[(2S)-2-[(2S)-4-carbamoyl-2-[(2S)-2,6-diaminohexanamido]butanamido]-3-(1H-imidazol-4-yl)propanamido]-3-sulfanylpropanoic acid

C20H34N8O6S (514.2322)


   

Gln Cys His Lys

(2S)-6-amino-2-[(2S)-2-[(2R)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-sulfanylpropanamido]-3-(1H-imidazol-4-yl)propanamido]hexanoic acid

C20H34N8O6S (514.2322)


   

Gln Cys Lys His

(2S)-2-[(2S)-6-amino-2-[(2R)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-sulfanylpropanamido]hexanamido]-3-(1H-imidazol-4-yl)propanoic acid

C20H34N8O6S (514.2322)


   

Gln His Cys Lys

(2S)-6-amino-2-[(2R)-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-imidazol-4-yl)propanamido]-3-sulfanylpropanamido]hexanoic acid

C20H34N8O6S (514.2322)


   

Gln His Lys Cys

(2R)-2-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-amino-4-carbamoylbutanamido]-3-(1H-imidazol-4-yl)propanamido]hexanamido]-3-sulfanylpropanoic acid

C20H34N8O6S (514.2322)


   

Gln Lys Cys His

(2S)-2-[(2R)-2-[(2S)-6-amino-2-[(2S)-2-amino-4-carbamoylbutanamido]hexanamido]-3-sulfanylpropanamido]-3-(1H-imidazol-4-yl)propanoic acid

C20H34N8O6S (514.2322)


   

Gln Lys His Cys

(2R)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-amino-4-carbamoylbutanamido]hexanamido]-3-(1H-imidazol-4-yl)propanamido]-3-sulfanylpropanoic acid

C20H34N8O6S (514.2322)


   

hexanedioic acid,hexane-1,6-diol,1-isocyanato-4-[(4-isocyanatophenyl)methyl]benzene

hexanedioic acid,hexane-1,6-diol,1-isocyanato-4-[(4-isocyanatophenyl)methyl]benzene

C27H34N2O8 (514.2315)


   

hexanedioic acid,hexane-1,6-diol,1-isocyanato-2-[(2-isocyanatophenyl)methyl]benzene

hexanedioic acid,hexane-1,6-diol,1-isocyanato-2-[(2-isocyanatophenyl)methyl]benzene

C27H34N2O8 (514.2315)


   

PA(2:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(2:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C25H39O9P (514.2332)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/2:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/2:0)

C25H39O9P (514.2332)


   

PA(2:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(2:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C25H39O9P (514.2332)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/2:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/2:0)

C25H39O9P (514.2332)


   

PA(2:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(2:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C25H39O9P (514.2332)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/2:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/2:0)

C25H39O9P (514.2332)


   

PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C25H39O9P (514.2332)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/2:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/2:0)

C25H39O9P (514.2332)


   

PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C25H39O9P (514.2332)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/2:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/2:0)

C25H39O9P (514.2332)


   

PA(2:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(2:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C25H39O9P (514.2332)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/2:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/2:0)

C25H39O9P (514.2332)


   
   

PA 18:4/4:1;O

PA 18:4/4:1;O

C25H39O9P (514.2332)


   
   
   
   

(2s)-2-{[(2e,4e,6e,8e,10e,12e,14e)-15-{[(1s,2s)-1-carboxy-2-methylbutyl]-c-hydroxycarbonimidoyl}-1-hydroxypentadeca-2,4,6,8,10,12,14-heptaen-1-ylidene]amino}pentanedioic acid

(2s)-2-{[(2e,4e,6e,8e,10e,12e,14e)-15-{[(1s,2s)-1-carboxy-2-methylbutyl]-c-hydroxycarbonimidoyl}-1-hydroxypentadeca-2,4,6,8,10,12,14-heptaen-1-ylidene]amino}pentanedioic acid

C27H34N2O8 (514.2315)


   

1-(5-ethenyl-4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-yl)ethanone

1-(5-ethenyl-4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-yl)ethanone

C27H34N2O8 (514.2315)


   

1-[(4s,5r,6s)-5-ethenyl-4-[(1s)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl]-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-yl]ethanone

1-[(4s,5r,6s)-5-ethenyl-4-[(1s)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl]-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-yl]ethanone

C27H34N2O8 (514.2315)


   

2-({15-[(1-carboxy-2-methylbutyl)-c-hydroxycarbonimidoyl]-1-hydroxypentadeca-2,4,6,8,10,12,14-heptaen-1-ylidene}amino)pentanedioic acid

2-({15-[(1-carboxy-2-methylbutyl)-c-hydroxycarbonimidoyl]-1-hydroxypentadeca-2,4,6,8,10,12,14-heptaen-1-ylidene}amino)pentanedioic acid

C27H34N2O8 (514.2315)