Exact Mass: 513.2814
Exact Mass Matches: 513.2814
Found 150 metabolites which its exact mass value is equals to given mass value 513.2814
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Glycolithocholate sulphate
Sulfolithocholylglycine is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). Sulfolithocholylglycine is a sulfated bile acids which has a greater renal clearance rate than lithocholylglycine. [HMDB] Sulfolithocholylglycine is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct, therefore, exist in a glycine conjugated form (PMID: 16949895). Sulfolithocholylglycine is a sulfated bile acid which has a greater renal clearance rate than lithocholylglycine. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Glycolithocholic acid 3-sulfate (SLCG) is a cholic acid derivative and a metabolite of glycolithocholic acid. Glycolithocholic acid 3-sulfate inhibits replication of HIV-1 in vitro. Glycolithocholic acid 3-sulfate can be used for the research of HIV infection and gallbladder disease[1][2].
Sulfoglycolithocholate(2-)
Sulfoglycolithocholate(2-) is also known as Sulfoglycolithocholic acid or Glycolithocholic acid sulfuric acid. Sulfoglycolithocholate(2-) is considered to be practically insoluble (in water) and acidic. It is a microbial metabolite.
MG(LTE4/0:0/0:0)
MG(LTE4/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/LTE4/0:0)
MG(0:0/LTE4/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
Glyco 3a-sulfate-5b-cholanic acid
BA-144-150. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-144-120. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-144-90. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-144-60. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-144-30. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan.
2-((4R)-4-((5R,7R,8R,9S,10S,12S,13R,17R)-7,12-dihydroxy-10,13-dimethyl-3-oxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamido)ethane-1-sulfonic acid
2-((R)-4-((3R,5R,6S,7R,8S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent-2-enamido)ethane-1-sulfonic acid
2-((4R)-4-((3R,5R,6S,7R,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent-2-enamido)ethane-1-sulfonic acid
2-((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent-2-enamido)ethane-1-sulfonic acid
Glu Ile Pro Arg
Glu Ile Arg Pro
Glu Leu Pro Arg
Glu Leu Arg Pro
Glu Pro Ile Arg
Glu Pro Leu Arg
Glu Pro Arg Ile
Glu Pro Arg Leu
Glu Arg Ile Pro
Glu Arg Leu Pro
Glu Arg Pro Ile
Glu Arg Pro Leu
His Lys Met Val
His Lys Val Met
His Met Lys Val
His Met Val Lys
His Val Lys Met
His Val Met Lys
Ile Glu Pro Arg
Ile Glu Arg Pro
Ile Pro Glu Arg
Ile Pro Arg Glu
Ile Arg Glu Pro
Ile Arg Pro Glu
Lys His Met Val
Lys His Val Met
Lys Met His Val
Lys Met Val His
Lys Val His Met
Lys Val Met His
Leu Glu Pro Arg
Leu Glu Arg Pro
Leu Pro Glu Arg
Leu Pro Arg Glu
Leu Arg Glu Pro
Leu Arg Pro Glu
Met His Lys Val
Met His Val Lys
Met Lys His Val
Met Lys Val His
Met Val His Lys
Met Val Lys His
Pro Glu Ile Arg
Pro Glu Leu Arg
Pro Glu Arg Ile
Pro Glu Arg Leu
Pro Ile Glu Arg
Pro Ile Arg Glu
Pro Leu Glu Arg
Pro Leu Arg Glu
Pro Arg Glu Ile
Pro Arg Glu Leu
Pro Arg Ile Glu
Pro Arg Leu Glu
Arg Glu Ile Pro
Arg Glu Leu Pro
Arg Glu Pro Ile
Arg Glu Pro Leu
Arg Ile Glu Pro
Arg Ile Pro Glu
Arg Leu Glu Pro
Arg Leu Pro Glu
Arg Pro Glu Ile
Arg Pro Glu Leu
Arg Pro Ile Glu
Arg Pro Leu Glu
Val His Lys Met
Val His Met Lys
Val Lys His Met
Val Lys Met His
Val Met His Lys
Val Met Lys His
2-[(1S,2S)-1-Ethyl-2-benzyloxypropyl]-2,4-dihydro-4-[4-[4-(4-hydroxyphenyl)-1-piperazinyl]phenyl]-3H-1,2,4-triazol-3-one
Methyl 2-(4-(4-((4-((4-hydroxyphenyl)(phenyl)methyl)piperidin-1-yl)oxy)butyl)phenyl)-2-methylpropanoate
2,8-bis(dimethylamino)-10-dodecyl-acridinium bromide
2-(4-Hydroxyphenyl)-3-methyl-1-(10-pentylsulfonyldecyl)-5-indolol
(8S,9R,10R,13R,14S,16R,17R)-17-[(E,2R)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-8,10,12,15,16,17-hexahydro-7H-cyclopenta[a]phenanthren-2-olate
N-[[(3R,9R,10S)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
3,12-Dihydroxy-7-oxocholanoyltaurine
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
N-[[(2S,3S)-8-[2-(1-hydroxycyclopentyl)ethynyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2R,3R)-8-[2-(1-hydroxycyclopentyl)ethynyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2S,3R)-8-[2-(1-hydroxycyclopentyl)ethynyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2S,3R)-8-[2-(1-hydroxycyclopentyl)ethynyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2R,3S)-8-[2-(1-hydroxycyclopentyl)ethynyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2R,3R)-8-[2-(1-hydroxycyclopentyl)ethynyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2R,3S)-8-[2-(1-hydroxycyclopentyl)ethynyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2S,3S)-8-[2-(1-hydroxycyclopentyl)ethynyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(3R,9R,10R)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3S,9R,10R)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3S,9S,10S)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3S,9S,10S)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3R,9R,10S)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[(5R,6R,9S)-5-methoxy-3,6,9-trimethyl-2-oxo-8-(3,3,3-trifluoropropyl)-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]cyclopentanecarboxamide
N-[(5S,6R,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-8-(3,3,3-trifluoropropyl)-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]cyclopentanecarboxamide
2-methoxy-N-[(4S,7S,8S)-8-methoxy-5-[(2-methoxyphenyl)methyl]-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4R,7R,8R)-8-methoxy-5-[(2-methoxyphenyl)methyl]-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4S,7S,8R)-8-methoxy-5-[(2-methoxyphenyl)methyl]-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
N-[[(3R,9S,10R)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3R,9S,10S)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3S,9R,10S)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3S,9R,10R)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3R,9R,10R)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3S,9S,10R)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3R,9S,10R)-16-(dimethylamino)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3S,9R,10S)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3S,9S,10R)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[[(3R,9S,10S)-16-(dimethylamino)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylmethanesulfonamide
N-[(5R,6R,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-8-(3,3,3-trifluoropropyl)-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]cyclopentanecarboxamide
N-[(5S,6S,9S)-5-methoxy-3,6,9-trimethyl-2-oxo-8-(3,3,3-trifluoropropyl)-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]cyclopentanecarboxamide
N-[(5S,6S,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-8-(3,3,3-trifluoropropyl)-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]cyclopentanecarboxamide
N-[(5R,6S,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-8-(3,3,3-trifluoropropyl)-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]cyclopentanecarboxamide
N-[(5S,6R,9S)-5-methoxy-3,6,9-trimethyl-2-oxo-8-(3,3,3-trifluoropropyl)-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]cyclopentanecarboxamide
2-methoxy-N-[(4R,7R,8S)-8-methoxy-5-[(2-methoxyphenyl)methyl]-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4S,7R,8R)-8-methoxy-5-[(2-methoxyphenyl)methyl]-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4R,7S,8S)-8-methoxy-5-[(2-methoxyphenyl)methyl]-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4R,7S,8R)-8-methoxy-5-[(2-methoxyphenyl)methyl]-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4S,7R,8S)-8-methoxy-5-[(2-methoxyphenyl)methyl]-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-((4R)-4-((3R,5R,6S,7R,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent-2-enamido)ethane-1-sulfonic acid
eurysterol A(1-)
An organosulfonate oxoanion obtained by the deprotonation of the sulfate group of eurysterol A sulfonic acid.
2-((4R)-4-((5R,7R,8R,9S,10S,12S,13R,17R)-7,12-dihydroxy-10,13-dimethyl-3-oxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamido)ethane-1-sulfonic acid
4-[9-(dimethylamino)-11,11-dimethyl-3,4-dihydro-2H-naphtho[2,3-g]quinolin-1-ium-1-yl]-N-[2-(2,5-dioxopyrrol-1-yl)ethyl]butanamide
[2-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] propanoate
2-((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent-2-enamido)ethane-1-sulfonic acid
Sulfoglycolithocholic acid
The 3-O-sulfo derivative of glycolithocholic acid.