Exact Mass: 509.17578420000007
Exact Mass Matches: 509.17578420000007
Found 65 metabolites which its exact mass value is equals to given mass value 509.17578420000007
,
within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error
0.0002 dalton.
3-OxoUndecanoyl-CoA
3-oxoundecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-oxoundecanoic acid thioester of coenzyme A. 3-oxoundecanoyl-coa is an acyl-CoA with 11 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-oxoundecanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-oxoundecanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-OxoUndecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-OxoUndecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-OxoUndecanoyl-CoA into 3-OxoUndecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-OxoUndecanoylcarnitine is converted back to 3-OxoUndecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-OxoUndecanoyl-CoA occurs in four steps. First, since 3-OxoUndecanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-OxoUndecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produc...
Ala Cys Met Trp
Ala Cys Trp Met
Ala Met Cys Trp
Ala Met Trp Cys
Ala Trp Cys Met
Ala Trp Met Cys
Cys Ala Met Trp
Cys Ala Trp Met
Cys Cys Val Trp
Cys Cys Trp Val
Cys Met Ala Trp
Cys Met Trp Ala
Cys Val Cys Trp
Cys Val Trp Cys
Cys Trp Ala Met
Cys Trp Cys Val
Cys Trp Met Ala
Cys Trp Val Cys
Asp Asp Phe Asn
C21H27N5O10 (509.17578420000007)
Asp Asp Asn Phe
C21H27N5O10 (509.17578420000007)
Asp Phe Asp Asn
C21H27N5O10 (509.17578420000007)
Asp Phe Asn Asp
C21H27N5O10 (509.17578420000007)
Asp Asn Asp Phe
C21H27N5O10 (509.17578420000007)
Asp Asn Phe Asp
C21H27N5O10 (509.17578420000007)
Phe Asp Asp Asn
C21H27N5O10 (509.17578420000007)
Phe Asp Asn Asp
C21H27N5O10 (509.17578420000007)
Phe Asn Asp Asp
C21H27N5O10 (509.17578420000007)
Met Ala Cys Trp
Met Ala Trp Cys
Met Cys Ala Trp
Met Cys Trp Ala
Met Trp Ala Cys
Met Trp Cys Ala
Asn Asp Asp Phe
C21H27N5O10 (509.17578420000007)
Asn Asp Phe Asp
C21H27N5O10 (509.17578420000007)
Asn Phe Asp Asp
C21H27N5O10 (509.17578420000007)
Val Cys Cys Trp
Val Cys Trp Cys
Val Trp Cys Cys
Trp Ala Cys Met
Trp Ala Met Cys
Trp Cys Ala Met
Trp Cys Cys Val
Trp Cys Met Ala
Trp Cys Val Cys
Trp Met Ala Cys
Trp Met Cys Ala
Trp Val Cys Cys
(4R,12aS)-N-[(2,4-Difluorophenyl)methyl]-3,4,6,8,12,12a-hexahydro-4-methyl-6,8-dioxo-7-(phenylmethoxy)-2H-pyrido[1,2:4,5]pyrazino[2,1-b][1,3]oxazine-9-carboxamide
N-[(1R,3S,4aS,9aR)-3-[2-[(2,5-difluorophenyl)methylamino]-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-pyridinecarboxamide
N-[(1S,3R,4aR,9aS)-3-[2-[(2,5-difluorophenyl)methylamino]-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-pyridinecarboxamide
N-[(1R,3R,4aR,9aS)-3-[2-[(2,5-difluorophenyl)methylamino]-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b][1]benzofuran-6-yl]pyridine-3-carboxamide
N-[(1R,3S,4aR,9aS)-3-[2-[(2,5-difluorophenyl)methylamino]-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b][1]benzofuran-6-yl]pyridine-3-carboxamide
4-chloro-N-[(4R,7S,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzenesulfonamide
C24H32ClN3O5S (509.17510920000007)
4-chloro-N-[(4R,7S,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzenesulfonamide
C24H32ClN3O5S (509.17510920000007)
4-chloro-N-[(4R,7R,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzenesulfonamide
C24H32ClN3O5S (509.17510920000007)
N-[(1S,3S,4aS,9aR)-3-[2-[(2,5-difluorophenyl)methylamino]-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-pyridinecarboxamide
N-[(1S,3R,4aS,9aR)-3-[2-[(2,5-difluorophenyl)methylamino]-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-3-pyridinecarboxamide
4-chloro-N-[(4R,7R,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzenesulfonamide
C24H32ClN3O5S (509.17510920000007)
4-chloro-N-[(4S,7R,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzenesulfonamide
C24H32ClN3O5S (509.17510920000007)
4-chloro-N-[(4S,7S,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzenesulfonamide
C24H32ClN3O5S (509.17510920000007)
4-chloro-N-[(4S,7R,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzenesulfonamide
C24H32ClN3O5S (509.17510920000007)
4-chloro-N-[(4S,7S,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzenesulfonamide
C24H32ClN3O5S (509.17510920000007)