Exact Mass: 483.02698740000005
Exact Mass Matches: 483.02698740000005
Found 28 metabolites which its exact mass value is equals to given mass value 483.02698740000005
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Penoxsulam
C16H14F5N5O5S (483.06357740000004)
CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4005; ORIGINAL_PRECURSOR_SCAN_NO 4004 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8116; ORIGINAL_PRECURSOR_SCAN_NO 8114 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4018; ORIGINAL_PRECURSOR_SCAN_NO 4017 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8170; ORIGINAL_PRECURSOR_SCAN_NO 8166 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8176; ORIGINAL_PRECURSOR_SCAN_NO 8174 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4015; ORIGINAL_PRECURSOR_SCAN_NO 4014 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8118; ORIGINAL_PRECURSOR_SCAN_NO 8115 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4004; ORIGINAL_PRECURSOR_SCAN_NO 4003 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3984; ORIGINAL_PRECURSOR_SCAN_NO 3983 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8080; ORIGINAL_PRECURSOR_SCAN_NO 8079 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8164; ORIGINAL_PRECURSOR_SCAN_NO 8162
Cytidine triphosphate
Cytidine triphosphate (CTP), also known as 5-CTP, is pyrimidine nucleoside triphosphate. Formally, CTP is an ester of cytidine and triphosphoric acid. It belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. CTP, much like ATP, consists of a base (cytosine), a ribose sugar, and three phosphate groups. CTP is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. CTP exists in all living species, ranging from bacteria to plants to humans and is used in the synthesis of RNA via RNA polymerase. Another enzyme known as cytidine triphosphate synthetase (CTPS) mediates the conversion of uridine triphosphate (UTP) into cytidine triphosphate (CTP) which is the rate-limiting step of de novo CTP biosynthesis. CTPS catalyzes a complex set of reactions that include the ATP-dependent transfer of the amide nitrogen from glutamine (i.e., glutaminase reaction) to the C-4 position of UTP to generate CTP. GTP stimulates the glutaminase reaction by accelerating the formation of a covalent glutaminyl enzyme intermediate. CTPS activity regulates the intracellular rates of RNA synthesis, DNA synthesis, and phospholipid synthesis. CTPS is an established target for a number of antiviral, antineoplastic, and antiparasitic drugs. CTP also acts as an inhibitor of the enzyme known as aspartate carbamoyltransferase, which is used in pyrimidine biosynthesis. CTP also reacts with nitrogen-containing alcohols to form coenzymes that participate in the formation of phospholipids. In particular, CTP is the direct precursor of the activated, phospholipid pathway intermediates CDP-diacylglycerol, CDP-choline, and CDP-ethanolamine ((PMID: 18439916). CDP-diacylglycerol is the source of the phosphatidyl moiety for phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (synthesized by way of the CDP-diacylglycerol pathway) as well as phosphatidylglycerol, cardiolipin, and phosphatidylinositol (PMID: 18439916). Cytidine triphosphate, also known as 5-ctp or cytidine 5-triphosphoric acid, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Cytidine triphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Cytidine triphosphate can be found in a number of food items such as lowbush blueberry, black radish, american pokeweed, and cherry tomato, which makes cytidine triphosphate a potential biomarker for the consumption of these food products. Cytidine triphosphate can be found primarily in cellular cytoplasm, as well as throughout all human tissues. Cytidine triphosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine triphosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-14:0/i-17:0/i-16:0/i-21:0), cardiolipin biosynthesis cl(a-13:0/a-21:0/i-22:0/i-17:0), phosphatidylethanolamine biosynthesis PE(18:2(9Z,12Z)/24:0), and cardiolipin biosynthesis cl(i-13:0/a-21:0/a-15:0/i-16:0). Cytidine triphosphate is also involved in several metabolic disorders, some of which include sialuria or french type sialuria, tay-sachs disease, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and g(m2)-gangliosidosis: variant B, tay-sachs disease. Cytidine triphosphate is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. Cytidine triphosphate is a coenzyme in metabolic reactions like the synthesis of glycerophospholipids and glycosylation of proteins . Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].
CoM-S-S-CoB
C13H26NO10PS3 (483.04564260000006)
Arabinofuranosylcytosine triphosphate
Clopidogrel acyl glucuronide
C21H22ClNO8S (483.07546020000007)
3-Hydroxy-5-(methylsulfonyl)pentyl glucosinolate
C13H25NO12S3 (483.05388500000004)
Cytidine triphosphate
Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].
((2S,4S)-2-((1H-1,2,4-TRIAZOL-1-YL)METHYL)-2-(2,4-DICHLOROPHENYL)-1,3-DIOXOLAN-4-YL)METHYL 4-METHYLBENZENESULFONATE
C20H19Cl2N3O5S (483.0422424000001)
2-benzo[f]quinolin-3-yl-1H-indene-1,3(2H)-dione, disulpho derivative
methyl 3-[bis[(2-methylpropan-2-yl)oxycarbonyl]amino]-5-iodothiophene-2-carboxylate
C16H22INO6S (483.02125420000004)
2,7-Naphthalenedisulfonicacid, 3-[2-(4-aminophenyl)diazenyl]-4,5-dihydroxy-, sodium salt (1:2)
C16H11N3Na2O8S2 (482.97829659999996)
3-cyclopropyl-1-(2-fluoro-4-iodophenyl)-5-hydroxy-6,8-dimethylpyrido[2,3-d]pyrimidine-2,4,7(1H,3H,8H)-trione
2-Amino-1-[5-O-[hydroxy[[hydroxy(phosphonooxy)phosphinyl]oxy]phosphinyl]-beta-D-ribofuranosyl]-4(1H)-pyrimidinone
3-Bromo-spiro[9H-fluorene-9,8-[8H]indolo[3,2,1-de]acridine]
4-Bromo-spiro[9H-fluorene-9,8-[8H]indolo[3,2,1-de]acridine]
N-(5-Bromo-2-pyridinyl)-2-[[4-[(hydroxyamino)iminomethyl]benzoyl]amino]-5-methoxybenzamide
2-({5-cyano-7-[(1S,2S,3R,4R)-2,3-dihydroxy-4-[(phosphonatooxy)methyl]cyclopentyl]-3H,4H-pyrrolo[2,3-d]pyrimidin-4-yl}amino)butanedioate
(2S)-2-amino-5-[[(2R)-1-(carboxymethylamino)-3-(2,4-dichloro-3,6-dihydroxyphenyl)sulfanyl-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
C16H19Cl2N3O8S (483.02698740000005)
Aluminum;magnesium;silicon;hydroxide;tetradecahydrate
Al2H29Mg2O15Si4- (482.99153240000004)
2-(1,3-benzothiazol-2-ylthio)-N-[2-chloro-5-(4-morpholinylsulfonyl)phenyl]acetamide
C19H18ClN3O4S3 (483.01479380000006)
CYTIDINE-5-triphosphATE
Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].