Exact Mass: 466.3535
Exact Mass Matches: 466.3535
Found 12 metabolites which its exact mass value is equals to given mass value 466.3535
,
within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error
0.0002 dalton.
LysoSM(d18:0)
Sphingomyelin (d18:0/0:0) or LysoSM(d18:0) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase. Sphingomyelin (d18:0/0:0) or LysoSM(d18:0)is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction.
[3-carboxy-2-[(8E,11E,13E)-15-hydroxyicosa-8,11,13-trienoyl]oxypropyl]-trimethylazanium
[3-carboxy-2-[(9E,11E,14E)-8-hydroxyicosa-9,11,14-trienoyl]oxypropyl]-trimethylazanium
[3-carboxy-2-[(5E,8E,11E)-3-hydroxyicosa-5,8,11-trienoyl]oxypropyl]-trimethylazanium
[3-carboxy-2-[(8E,11E,14E)-3-hydroxyicosa-8,11,14-trienoyl]oxypropyl]-trimethylazanium
[3-Carboxy-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propyl]-trimethylazanium
[3-Carboxy-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propyl]-trimethylazanium
[3-Carboxy-2-[7-(5-heptyl-3,4-dimethylfuran-2-yl)heptanoyloxy]propyl]-trimethylazanium
[3-Carboxy-2-[9-(5-hexyl-3-methylfuran-2-yl)nonanoyloxy]propyl]-trimethylazanium
Sphinganine-1-phosphocholine
A phosphosphingolipid consisting of sphinganine having a phosphocholine group attached to its primary hydroxyl group.