Exact Mass: 449.3504902
Exact Mass Matches: 449.3504902
Found 142 metabolites which its exact mass value is equals to given mass value 449.3504902
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Deoxycholic acid glycine conjugate
C26H43NO5 (449.31410680000005)
Deoxycholic acid glycine conjugate, or or Deoxyglycocholic acid or Deoxygcholylglycine is a bile salt formed in the liver by conjugation of deoxycholate with glycine. It usually exists as the sodium salt. Deoxygcholylglycine is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). As a bile acid Deoxyglycocholic acid acts as a detergent to solubilize fats for absorption and is itself absorbed. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Deoxyglycocholic acid is used as a cholagogue and choleretic. Deoxycholic acid glycine conjugate, or Deoxygcholylglycine, is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). As a bile salt it acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and choleretic. [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.
Glycine chenodeoxycholate
C26H43NO5 (449.31410680000005)
Chenodeoxycholic acid glycine conjugate is an acyl glycine and a bile acid-glycine conugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). This compound usually exists as the sodium salt and acts as a detergent to solubilize fats for absorption and is itself absorbed. It is a cholagogue and choleretic. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) is a bile acid formed in the liver from chenodeoxycholate and glycine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) induces hepatocyte apoptosis[1][2].
Chenodeoxyglycocholic acid
C26H43NO5 (449.31410680000005)
Chenodeoxyglycocholic acid is a glycine conjugated bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Chenodeoxyglycocholic acid is a glycine conjugated bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Glycochenodeoxycholic acid (Chenodeoxycholylglycine) is a bile acid formed in the liver from chenodeoxycholate and glycine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) induces hepatocyte apoptosis[1][2].
N-(3α,12α-dihydroxy-5β-cholan-24-oyl)-glycine
C26H43NO5 (449.31410680000005)
Glycoursodeoxycholic acid
C26H43NO5 (449.31410680000005)
Glycoursodeoxycholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Glycoursodeoxycholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Glycoursodeoxycholic acid, a acyl glycine and a bile acid-glycine conjugate, is a metabolite of ursodeoxycholic acid.
Icosa-8,11,14-trienoylcarnitine
Icosa-8,11,14-trienoylcarnitine is an acylcarnitine. More specifically, it is an icosa-8,11,14-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Icosa-8,11,14-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Icosa-8,11,14-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Icosa-5,8,11-trienoylcarnitine
Icosa-5,8,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an icosa-5,8,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Icosa-5,8,11-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Icosa-5,8,11-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(11Z,14Z,17Z)-Icosa-11,14,17-trienoylcarnitine
(11Z,14Z,17Z)-icosa-11,14,17-trienoylcarnitine is an acylcarnitine. More specifically, it is an (11Z,14Z,17Z)-icosa-11,14,17-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (11Z,14Z,17Z)-icosa-11,14,17-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (11Z,14Z,17Z)-icosa-11,14,17-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Chenodeoxycholylglycine
C26H43NO5 (449.31410680000005)
Deoxycholylglycine
C26H43NO5 (449.31410680000005)
4-[(S)-((2R,5S)-4-Allyl-2,5-dimethyl-piperazin-1-yl)-(3-methoxy-phenyl)-methyl]-N,N-diethyl-benzamide
Glycohyodeoxycholic acid
C26H43NO5 (449.31410680000005)
Glycohyodeoxycholic acid is a major metabolite of Hyodeoxycholic acid in humans. Glycohyodeoxycholic acid has preventative effects on gallstone formation[1][2].
Glycochenodeoxycholate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycochenodeoxycholic acid (Chenodeoxycholylglycine) is a bile acid formed in the liver from chenodeoxycholate and glycine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) induces hepatocyte apoptosis[1][2].
Glycodeoxycholate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.
Glycochenodeoxycholic acid
C26H43NO5 (449.31410680000005)
A bile acid glycine conjugate having 3alpha,7alpha-dihydroxy-5beta-cholan-24-oyl as the bile acid component. Chenodeoxycholic acid glycine conjugate is an acyl glycine and a bile acid-glycine conugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). This compound usually exists as the sodium salt and acts as a detergent to solubilize fats for absorption and is itself absorbed. It is a cholagogue and choleretic. [HMDB] Glycochenodeoxycholic acid (Chenodeoxycholylglycine) is a bile acid formed in the liver from chenodeoxycholate and glycine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) induces hepatocyte apoptosis[1][2].
deoxycholic acid glycine conjugate
C26H43NO5 (449.31410680000005)
Glycodeoxycholic acid
C26H43NO5 (449.31410680000005)
CONFIDENCE standard compound; INTERNAL_ID 54
Glycoursodeoxycholic acid
C26H43NO5 (449.31410680000005)
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts A bile acid glycine conjugate derived from ursoodeoxycholic acid. D005765 - Gastrointestinal Agents > D002793 - Cholic Acids CONFIDENCE standard compound; INTERNAL_ID 55 Glycoursodeoxycholic acid, a acyl glycine and a bile acid-glycine conjugate, is a metabolite of ursodeoxycholic acid.
Glycohyodeoxycholic acid
C26H43NO5 (449.31410680000005)
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids CONFIDENCE standard compound; INTERNAL_ID 82 Glycohyodeoxycholic acid is a major metabolite of Hyodeoxycholic acid in humans. Glycohyodeoxycholic acid has preventative effects on gallstone formation[1][2].
N-[(3a,5b,7a)-3,7-Dihydroxy-24-oxocholan-24-yl]glycine
C26H43NO5 (449.31410680000005)
BA-130-150. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-130-120. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-130-60. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-130-30. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan.
N-[(3alpha,5beta,7beta)-3,7-Dihydroxy-24-oxocholan-24-yl]glycine
C26H43NO5 (449.31410680000005)
BA-131-90. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-131-60. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan.
Glycochenodeoxycholic acid; LC-tDDA; CE10
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid; LC-tDDA; CE20
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid; LC-tDDA; CE30
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid; LC-tDDA; CE40
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H4O2]+; AIF; CE0; CorrDec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H4O2]+; AIF; CE10; CorrDec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H4O2]+; AIF; CE30; CorrDec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H2O]+; AIF; CE0; CorrDec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H2O]+; AIF; CE10; CorrDec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H2O]+; AIF; CE30; CorrDec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid; AIF; CE0; CorrDec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid; AIF; CE10; CorrDec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid; AIF; CE30; CorrDec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid; AIF; CE0; MS2Dec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid; AIF; CE10; MS2Dec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid; AIF; CE30; MS2Dec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H2O]+; AIF; CE0; MS2Dec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H2O]+; AIF; CE10; MS2Dec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H2O]+; AIF; CE30; MS2Dec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H4O2]+; AIF; CE0; MS2Dec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H4O2]+; AIF; CE10; MS2Dec
C26H43NO5 (449.31410680000005)
Glycochenodeoxycholic acid [M+H-H4O2]+; AIF; CE30; MS2Dec
C26H43NO5 (449.31410680000005)
((4R)-4-((3R,5R,9S,10S,12R,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine
C26H43NO5 (449.31410680000005)
Glycoursodeoxycholate
C26H43NO5 (449.31410680000005)
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Glycoursodeoxycholic acid, a acyl glycine and a bile acid-glycine conjugate, is a metabolite of ursodeoxycholic acid.
Glycodeoxycholate
C26H43NO5 (449.31410680000005)
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents A bile acid glycine conjugate of deoxycholic acid. Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.
4-(n-Butoxy)phenyl-4-trans-heptylcyclohexylbenzoate
C30H41O3- (449.30555360000005)
SNC80
SNC80 (NIH 10815) is a potent, highly selective and non-peptide δ-opioid receptor agonist with a Ki of 1.78 nM and an IC50 of 2.73 nM. SNC80 also selectively activates μ-δ heteromer in HEK293 cells with an EC50 of 52.8 nM. SNC80 shows antinociceptive, antihyperalgesic and antidepressant‐like effects. SNC80 has the potential for multiple headache disorders treatment[1][2][3][4][5][6].
Nicodicosapent
Nicodicosapent is a fatty acid niacin conjugate that is also an inhibitor of the sterol regulatory element binding protein (SREBP), a key regulator of cholesterol metabolism proteins such as PCSK9, HMG-CoA reductase, ATP citrate lyase, and NPC1L1.
2-[[(4R)-4-[(3R,5S,7S,10S,13R,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid
C26H43NO5 (449.31410680000005)
(25R)-3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-oate
Conjugate base of (25R)-3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-oic acid.
Chenodeoxycholic acid glycine conjugate
C26H43NO5 (449.31410680000005)
(3R,9R,10R)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3R,9S,10R)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
3alpha,7alpha,12alpha-Trihydroxy-5beta-cholestanoate
((4R)-4-((3R,5R,9S,10S,12R,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine
C26H43NO5 (449.31410680000005)
(3S,9R,10S)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3R,9R,10S)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3S,9S,10S)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3R,9S,10R)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3S,9R,10S)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3R,9R,10S)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3S,9S,10R)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3R,9R,10R)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3R,9S,10S)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3S,9S,10S)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3S,9R,10R)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
(3S,9S,10R)-16-(dimethylamino)-9-[(dimethylamino)methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one
C25H43N3O4 (449.32533980000005)
3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-4-(trimethylazaniumyl)butanoate
N-[(4E,8E,12E)-1,3-dihydroxytetracosa-4,8,12-trien-2-yl]butanamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxynonadeca-4,8,12-trien-2-yl]nonanamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxyhenicosa-4,8,12-trien-2-yl]heptanamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxytricosa-4,8,12-trien-2-yl]pentanamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxyhexacosa-4,8,12-trien-2-yl]acetamide
C28H51NO3 (449.38687360000006)
(11Z,14Z,17Z)-N-(1,3-dihydroxyoctan-2-yl)icosa-11,14,17-trienamide
C28H51NO3 (449.38687360000006)
(9Z,12Z)-N-[(E)-1,3-dihydroxynon-4-en-2-yl]nonadeca-9,12-dienamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxydocosa-4,8,12-trien-2-yl]hexanamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxyicosa-4,8,12-trien-2-yl]octanamide
C28H51NO3 (449.38687360000006)
(11Z,14Z)-N-[(E)-1,3-dihydroxyoct-4-en-2-yl]icosa-11,14-dienamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxypentacosa-4,8,12-trien-2-yl]propanamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxyoctadeca-4,8,12-trien-2-yl]decanamide
C28H51NO3 (449.38687360000006)
(9Z,12Z)-N-[(E)-1,3-dihydroxydec-4-en-2-yl]octadeca-9,12-dienamide
C28H51NO3 (449.38687360000006)
(9Z,12Z)-N-[(E)-1,3-dihydroxydodec-4-en-2-yl]hexadeca-9,12-dienamide
C28H51NO3 (449.38687360000006)
(9Z,12Z,15Z)-N-(1,3-dihydroxydecan-2-yl)octadeca-9,12,15-trienamide
C28H51NO3 (449.38687360000006)
(Z)-N-[(4E,8E)-1,3-dihydroxytrideca-4,8-dien-2-yl]pentadec-9-enamide
C28H51NO3 (449.38687360000006)
(9Z,12Z)-N-[(E)-1,3-dihydroxyundec-4-en-2-yl]heptadeca-9,12-dienamide
C28H51NO3 (449.38687360000006)
(Z)-N-[(4E,8E)-1,3-dihydroxydodeca-4,8-dien-2-yl]hexadec-9-enamide
C28H51NO3 (449.38687360000006)
(Z)-N-[(4E,8E)-1,3-dihydroxypentadeca-4,8-dien-2-yl]tridec-9-enamide
C28H51NO3 (449.38687360000006)
(7Z,10Z,13Z)-N-(1,3-dihydroxydodecan-2-yl)hexadeca-7,10,13-trienamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxyheptadeca-4,8,12-trien-2-yl]undecanamide
C28H51NO3 (449.38687360000006)
3-Hydroxy-2-(undecanoylamino)dodecane-1-sulfonic acid
C23H47NO5S (449.31747720000004)
2-(Decanoylamino)-3-hydroxytridecane-1-sulfonic acid
C23H47NO5S (449.31747720000004)
2-(Dodecanoylamino)-3-hydroxyundecane-1-sulfonic acid
C23H47NO5S (449.31747720000004)
3-Hydroxy-2-(tridecanoylamino)decane-1-sulfonic acid
C23H47NO5S (449.31747720000004)
N-[(4E,8E,12E)-1,3-dihydroxypentadeca-4,8,12-trien-2-yl]tridecanamide
C28H51NO3 (449.38687360000006)
(Z)-N-[(4E,8E)-1,3-dihydroxytetradeca-4,8-dien-2-yl]tetradec-9-enamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxytetradeca-4,8,12-trien-2-yl]tetradecanamide
C28H51NO3 (449.38687360000006)
N-[(4E,8E,12E)-1,3-dihydroxyhexadeca-4,8,12-trien-2-yl]dodecanamide
C28H51NO3 (449.38687360000006)
(Z)-N-[(4E,8E)-1,3-dihydroxyhexadeca-4,8-dien-2-yl]dodec-5-enamide
C28H51NO3 (449.38687360000006)
(Z)-N-[(4E,8E)-1,3-dihydroxypentadeca-4,8-dien-2-yl]tridec-8-enamide
C28H51NO3 (449.38687360000006)
2-[4-[(3R,5S,7R,8R,9S,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
C26H43NO5 (449.31410680000005)
2-[4-[(3R,5S,7S,8R,9S,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
C26H43NO5 (449.31410680000005)
2-[4-[(3R,5R,8R,9S,12S,14S,17R)-3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
C26H43NO5 (449.31410680000005)
2-[4-(3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoylamino]acetic acid
C26H43NO5 (449.31410680000005)
2-[4-(3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoylamino]acetic acid
C26H43NO5 (449.31410680000005)
3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-oate(1-)
A monocarboxylic acid anion resulting from the removal of the from from the carboxy group of 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-oic acid.
AcCa(20:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
CarE(20:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
SPHP(23:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(1s,2r,3r,4s,5s,6s,8s,9s,10r,13s,16s,17r)-8-ethoxy-11-ethyl-6,16-dimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-ol
C26H43NO5 (449.31410680000005)
7α,22s-dihydroxysitosterol
{"Ingredient_id": "HBIN013033","Ingredient_name": "7\u03b1,22s-dihydroxysitosterol","Alias": "NA","Ingredient_formula": "C29H53O3","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15132","TCMID_id": "6122","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
{[(4r)-4-[(1r,3as,3br,5ar,7r,9as,9bs,11s,11ar)-7,11-dihydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-1-hydroxypentylidene]amino}acetic acid
C26H43NO5 (449.31410680000005)
8-ethoxy-11-ethyl-6,16-dimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-ol
C26H43NO5 (449.31410680000005)