Exact Mass: 444.2809
Exact Mass Matches: 444.2809
Found 231 metabolites which its exact mass value is equals to given mass value 444.2809
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
1,25-Dihydroxyvitamin D3-26,23-lactone
1,25-Dihydroxyvitamin D3-26,23-lactone (1,25(OH)2D3-26,23-lactone) is a vitamin D3 metabolite. The formation of 1,25(OH)2D3-26,23-lactone occurs in normocalcemic states and in situations in which 1,25(OH)2D3 has been administered. (PMID: 6324253). 1,25-dihydroxyvitamin D3 and (23S)-1,23,25-trihydroxyvitamin D3 are efficient precursors to 1,25(OH)2D3-26,23-lactone. 1,25(OH)2D3-26,23-lactone has an inhibitory action of bone resorption and the lactone ring plays a major part in its expression. (PMID: 6548386, 1666030). 1,25-Dihydroxyvitamin D3-26,23-lactone (1,25(OH)2D3-26,23-lactone) is a vitamin D3 metabolite. The formation of 1,25(OH)2D3-26,23-lactone occurs in normocalcemic states and in situations in which 1,25(OH)2D3 has been administered. (PMID: 6324253) D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols
17-hydroxyprogesterone caproate
Calcitriol lactone
Proliferin
MG(6 keto-PGF1alpha/0:0/0:0)
MG(6 keto-PGF1alpha/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(TXB2/0:0/0:0)
MG(TXB2/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/6 keto-PGF1alpha/0:0)
MG(0:0/6 keto-PGF1alpha/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/TXB2/0:0)
MG(0:0/TXB2/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
12-epi-Scalarin
The 12-epimer of scalarin, a metabolite of marine sponges of the genus Spongia.
(19R)-9-acetyl-19-hydroxy-10,14-dimethyl-20-oxopentacyclo[11.8.0.0<2,10>.0<4,9 >.0<14,19>]henicos-17-yl acetate
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.480 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.475 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.479 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.476
12-amino-6,9-di-sec-butyl-15-methoxy-4,7,10-triaza-bicyclo[12.3.1]octadeca-1(18),2,14,16-tetraene-5,8,11-trione
12-O-acetyl-16-O-deacetyl-12,16-episcalarolbutenolide|12alpha-acetoxy-16beta-hydroxyscalarolbutenolide
3beta.27-Dihydroxy-25betaFH-cholesten-(5)-trion-(12.16.22)|3beta.27-dihydroxy-25betaFH-cholestene-(5)-trione-(12.16.22)
geranyl-1-O-alpha-L-arabinofuranosyl-(1->6)-beta-D-glucopyranoside
12-deacetoxy-23-acetoxy-19-O-acetylscalarin|12-deacetoxy-23-acetoxyscalarin
(25R)-2alpha,3beta-Dihydroxy-5alpha-spirost-9(11)-en-12-on|(25R)-2alpha,3beta-dihydroxy-5alpha-spirost-9(11)-en-12-one|(25R)-2alpha,3beta-dihydroxy-5alpha-spirost-9-en-12-one|9(11)-Dehydromanogenin|9-dehydromanogenin
(25S)-17alpha,25-dihydroxyspirost-4-en-3-one|diosbulbisin B
(6R*)-3,5-dihydroxy-4-<<(1S*,2R*,5R*)-2-hydroxy-2-methyl-5-(1-methylethenyl)cyclopentyl>methyl>-6-methyl-2-(3-methylbutanoyl)-6-(3-methylbut-2-enyl)cyclohexa-2,4-dien-1-one|(6R*)-3,5-dihydroxy-4-{[(1S*,2R*,5R*)-2-hydroxy-2-methyl-5-(1-methylethenyl)cyclopentyl]methyl}-6-methyl-2-(3-methylbutanoyl)-6-(3-methylbut-2-enyl)cyclohexa-2,4-dien-1-one
1-Acetoxy-3-methylene-6a,9,9,12a,14-pentamethyl-8-hydroxy-4,5-butano-2,3,4,5,6a,7,8,8a,9,10,11,12,12a,12b-tetradecahydro-1H-naphtho[2,1-b]oxocin-13-ene-15-one
(22S,25S)-17alpha,26-dihydroxy-22,25-epoxyfurost-4-en-3-one|diosbulbisin C
16-(2,5-dihydroxy-3-methylphenyl)-14-hydroxy-2,6,10,14-tetramethylhexadeca-2,6,10-trienoic acid
18R-acetoxy-20-hydroxy-2,10,19(21)-cladocoratrien-22(20)-olide|cladocoran A
C27H40O5_(2alpha,3beta,5alpha,8xi,14xi,25S)-2,3-Dihydroxyspirost-9(11)-en-12-one
Ala Ala Lys Arg
Ala Ala Arg Lys
Ala Lys Ala Arg
Ala Lys Arg Ala
Ala Arg Ala Lys
Ala Arg Lys Ala
Lys Ala Ala Arg
Lys Ala Arg Ala
Lys Arg Ala Ala
Arg Ala Ala Lys
Arg Ala Lys Ala
Arg Lys Ala Ala
(23S,25R)-25-hydroxyvitamin D3 26,23-peroxylactone / (23S,25R)-25-hydroxycholecalciferol 26,23-peroxylactone
(5Z,7E)-(1S,3R,23R,25R)-1,3,25-trihydroxy-9,10-seco-5,7,10(19)-cholestatrieno-26,23-lactone
(5Z,7E)-(1S,3R,23S,25R)-1,3,25-trihydroxy-9,10-seco-5,7,10(19)-cholestatrieno-26,23-lactone
(5Z,7E)-(1S,3R,23R,25S)-1,3,25-trihydroxy-9,10-seco-5,7,10(19)-cholestatrieno-26,23-lactone
(5Z,7E)-(1S,3R,23S,25S)-1,3,25-trihydroxy-9,10-seco-5,7,10(19)-cholestatrieno-26,23-lactone
(23S,25R)-25-hydroxyvitamin D3 26,23-peroxylactone
(23R,25R)-1alpha,25-dihydroxyvitamin D3 26,23-lactone
(23S,25R)-1alpha,25-dihydroxyvitamin D3 26,23-lactone / (23S,25R)-1alpha,25-dihydroxycholecalciferol 26,23-lactone
(23R,25S)-1alpha,25-dihydroxyvitamin D3 26,23-lactone / (23R,25S)-1alpha,25-dihydroxycholecalciferol 26,23-lactone
(23S,25S)-1alpha,25-dihydroxyvitamin D3 26,23-lactone / (23S,25S)-1alpha,25-dihydroxycholecalciferol 26,23-lactone
12-O-acetyl-16-O-deacetyl-16-epi-scalarobutenolide
A scalarane sesterterpenoid isolated from the marine sponge Hyrtios erectus that exhibits antineoplastic activity.
[4-[[4-(diethylamino)phenyl]phenylmethylene]-2,5-cyclohexadien-1-ylidene]diethylammonium acetate
2-(1-(4-(2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)propan- 2-yl)phenethyl)piperidin-4-yl)-1H-benzo[d]imidazole
(3R,5S)-5-[(2R)-2-[(1R,3AR,4E,7AR)-4-[(2Z)-2-[(3S,5S)-3,5-Dihydroxy-2-methylidene-cyclohexylidene]ethylidene]-7A-methyl-2,3,3A,5,6,7-hexahydro-1H-inden-1-YL]propyl]-3-hydroxy-3-methyl-oxolan-2-one
D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols
(17-acetyl-17-hydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-1-yl) hexanoate
2-[(3Z,7E,12Z)-11,17-dihydroxy-1,4,8,12-tetramethyl-18-oxo-16-bicyclo[13.3.0]octadeca-3,7,12,16-tetraenyl]propyl acetate
1-[(2,4-dimethoxyphenyl)methyl]-N-(2-phenylethyl)-N-(phenylmethyl)-4-piperidinamine
12-Deacetoxy-21-acetoxyscalarin
A scalarane sesterterpenoid isolated from the marine sponge Hyrtios erectus that exhibits antineoplastic activity.
1-[[(2S,3R)-8-(1-cyclopentenyl)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-1-methyl-3-propylurea
1-[[(2R,3R)-8-(1-cyclopentenyl)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-1-methyl-3-propylurea
1-[[(2R,3S)-8-(1-cyclopentenyl)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-1-methyl-3-propylurea
1-[[(2R,3R)-8-(1-cyclopentenyl)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-1-methyl-3-propylurea
1-[[(2S,3R)-8-(1-cyclopentenyl)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-1-methyl-3-propylurea
1-[[(2S,3S)-8-(1-cyclopentenyl)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-1-methyl-3-propylurea
1-[[(2S,3S)-8-(1-cyclopentenyl)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-1-methyl-3-propylurea
(1-acetyloxy-3-hydroxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
1,25-Dihydroxyvitamin D3-26,23-lactone
D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols
(4s,5as,5br,7as,11as,11br,13r,13as)-13-hydroxy-5b,8,8,11a,13a-pentamethyl-1-oxo-3h,4h,5h,5ah,6h,7h,7ah,9h,10h,11h,11bh,12h,13h-chryseno[1,2-c]furan-4-yl acetate
4',16'-dihydroxy-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-11'-one
3,5-dihydroxy-4-{[2-hydroxy-2-methyl-5-(prop-1-en-2-yl)cyclopentyl]methyl}-6-methyl-6-(3-methylbut-2-en-1-yl)-2-(3-methylbutanoyl)cyclohexa-2,4-dien-1-one
(3r,4s,5s,6r,7r,8r)-5,6,7-trihydroxy-2,2,4,6,8-pentamethyl-9-oxooxonan-3-yl (2e,4r)-4-hydroxydec-2-enoate
(2s)-2-[(3ar,13r,16as)-2,13-dihydroxy-3a,6,10,14-tetramethyl-3-oxo-4h,7h,8h,11h,12h,13h,16h,16ah-cyclopenta[15]annulen-1-yl]propyl acetate
4-hydroxy-3-{[2-(3-hydroxy-2-methylpropyl)-5a,9b-dimethyl-7-methylidene-octahydro-1h-naphtho[2,1-b]furan-6-yl]methyl}-5,6-dimethylpyran-2-one
8-(1-hydroxy-2,2,6-trimethylcyclohexyl)-6-methyl-2-[3-(5-oxo-2h-furan-3-yl)prop-2-en-1-ylidene]oct-5-en-1-yl acetate
4-hydroxy-3-{[3-(2-hydroxypropan-2-yl)-6a,10b-dimethyl-8-methylidene-decahydronaphtho[2,1-b]pyran-7-yl]methyl}-5,6-dimethylpyran-2-one
(1s,2r,3r,4ar,5s,8as)-4a,5-dimethyl-2-{[(3e)-3-methylpent-3-enoyl]oxy}-7-oxo-3-(prop-1-en-2-yl)-octahydronaphthalen-1-yl (3e)-3-methylpent-3-enoate
(5as,5br,7ar,9s,11ar,11br,13r,13as)-13-hydroxy-5b,8,8,11a,13a-pentamethyl-1-oxo-3h,4h,5h,5ah,6h,7h,7ah,9h,10h,11h,11bh,12h,13h-chryseno[1,2-c]furan-9-yl acetate
(1'r,2r,2's,4's,5s,7's,8's,9's,12's,13'r)-5,8'-dihydroxy-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-17'-en-16'-one
(1'r,2r,2's,4's,5r,7's,8's,9'r,10'r,12's,13'r)-8',10'-dihydroxy-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-17'-en-16'-one
1-[(2r,3r,4r,5r)-2-[(7s,8s)-8-[(2r)-1-acetylpiperidin-2-yl]-7,8-dihydroxyoctyl]-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-1-yl]ethanone
3,26-dihydroxycholest-5-ene-12,16,22-trione
{"Ingredient_id": "HBIN007028","Ingredient_name": "3,26-dihydroxycholest-5-ene-12,16,22-trione","Alias": "NA","Ingredient_formula": "C27H40O5","Ingredient_Smile": "NA","Ingredient_weight": "0","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8400","PubChem_id": "NA","DrugBank_id": "NA"}