Exact Mass: 441.2951044
Exact Mass Matches: 441.2951044
Found 37 metabolites which its exact mass value is equals to given mass value 441.2951044
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
N-Arachidonoyl Histidine
N-arachidonoyl histidine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Arachidonic acid amide of Histidine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Arachidonoyl Histidine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Arachidonoyl Histidine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
(S,S)-ciliatamide A|ciliatamide A|N-methyl-((S)-azepan-2-one-3-ylamino-(S)-oxo-3-phenylpropan-2-yl)dec-9-enamide
Lys Pro Val Val
Lys Val Pro Val
Lys Val Val Pro
Pro Lys Val Val
Pro Val Lys Val
Pro Val Val Lys
Val Lys Pro Val
Val Lys Val Pro
Val Pro Lys Val
Val Pro Val Lys
Val Val Lys Pro
Val Val Pro Lys
cyclopropyl methyl amide
C27H39NO4 (441.28789340000003)
N-(α-Linolenoyl) Tyrosine
C27H39NO4 (441.28789340000003)
LPE O-15:0;O
C20H44NO7P (441.28552440000004)
[1,1-Bis(hydroxymethyl)-3-(4-octylphenyl)propyl]carbamic acid Phenylmethyl Ester
C27H39NO4 (441.28789340000003)
Ciliatamide A
A lipopeptide that contains N-methylphenylalanine and lysine as the amino acid residues linked to a dec-9-enoyl moiety via an amide linkage (the R,R stereoisomer). It is isolated from the deep sea sponge Aaptos ciliata and exhibits antileishmanial activity.
2-[[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]amino]-3-(1H-imidazol-5-yl)propanoic acid
(3s,3ar,4s,6as,14r,15ar)-1-hydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-14-(2-oxopropyl)-3h,3ah,4h,6ah,9h,10h,11h,13h,14h-cycloundeca[d]isoindole-12,15-dione
C27H39NO4 (441.28789340000003)
(6e)-1-[(5s)-2,4-dihydroxy-5-[(s)-hydroxy(phenyl)methyl]-5h-pyrrol-3-yl]-4,6,8,10-tetramethyldodec-6-en-1-one
C27H39NO4 (441.28789340000003)
(3e,5e)-14-hydroxy-3,7,11-trimethyltetradeca-3,5-dien-1-yl 2-(hydroxymethyl)-1h-indole-3-carboxylate
C27H39NO4 (441.28789340000003)
(2s)-n-[(3s)-2-hydroxy-4,5,6,7-tetrahydro-3h-azepin-3-yl]-2-(n-methyldec-9-enamido)-3-phenylpropanimidic acid
1-hydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-14-(2-oxopropyl)-3h,3ah,4h,6ah,9h,10h,11h,13h,14h-cycloundeca[d]isoindole-12,15-dione
C27H39NO4 (441.28789340000003)
14-hydroxy-3,7,11-trimethyltetradeca-3,5-dien-1-yl 2-(hydroxymethyl)-1h-indole-3-carboxylate
C27H39NO4 (441.28789340000003)
(2r)-n-[(3r)-2-hydroxy-4,5,6,7-tetrahydro-3h-azepin-3-yl]-2-(n-methyldec-9-enamido)-3-phenylpropanimidic acid
1-{2,4-dihydroxy-5-[hydroxy(phenyl)methyl]-5h-pyrrol-3-yl}-4,6,8,10-tetramethyldodec-6-en-1-one
C27H39NO4 (441.28789340000003)