Exact Mass: 428.2713162
Exact Mass Matches: 428.2713162
Found 143 metabolites which its exact mass value is equals to given mass value 428.2713162
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
4,4-Diapolycopenedial
Nonaethylene glycol monomethyl ether
C19H40O10 (428.26213400000006)
MG(PGF2alpha/0:0/0:0)
MG(PGF2alpha/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(PGE1/0:0/0:0)
MG(PGE1/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(PGD1/0:0/0:0)
MG(PGD1/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/PGF2alpha/0:0)
MG(0:0/PGF2alpha/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/PGE1/0:0)
MG(0:0/PGE1/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/PGD1/0:0)
MG(0:0/PGD1/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
Gly Lys Lys Pro
Gly Lys Pro Lys
Gly Pro Lys Lys
Ile Ile Pro Ser
Ile Ile Ser Pro
Ile Leu Pro Ser
Ile Leu Ser Pro
Ile Pro Ile Ser
Ile Pro Leu Ser
Ile Pro Ser Ile
Ile Pro Ser Leu
Ile Pro Thr Val
Ile Pro Val Thr
Ile Ser Ile Pro
Ile Ser Leu Pro
Ile Ser Pro Ile
Ile Ser Pro Leu
Ile Thr Pro Val
Ile Thr Val Pro
Ile Val Pro Thr
Ile Val Thr Pro
Lys Gly Lys Pro
Lys Gly Pro Lys
Lys Lys Gly Pro
Lys Lys Pro Gly
Lys Pro Gly Lys
Lys Pro Lys Gly
Leu Ile Pro Ser
Leu Ile Ser Pro
Leu Leu Pro Ser
Leu Leu Ser Pro
Leu Pro Ile Ser
Leu Pro Leu Ser
Leu Pro Ser Ile
Leu Pro Ser Leu
Leu Pro Thr Val
Leu Pro Val Thr
Leu Ser Ile Pro
Leu Ser Leu Pro
Leu Ser Pro Ile
Leu Ser Pro Leu
Leu Thr Pro Val
Leu Thr Val Pro
Leu Val Pro Thr
Leu Val Thr Pro
Pro Gly Lys Lys
Pro Ile Ile Ser
Pro Ile Leu Ser
Pro Ile Ser Ile
Pro Ile Ser Leu
Pro Ile Thr Val
Pro Ile Val Thr
Pro Lys Gly Lys
Pro Lys Lys Gly
Pro Leu Ile Ser
Pro Leu Leu Ser
Pro Leu Ser Ile
Pro Leu Ser Leu
Pro Leu Thr Val
Pro Leu Val Thr
Pro Ser Ile Ile
Pro Ser Ile Leu
Pro Ser Leu Ile
Pro Ser Leu Leu
Pro Thr Ile Val
Pro Thr Leu Val
Pro Thr Val Ile
Pro Thr Val Leu
Pro Val Ile Thr
Pro Val Leu Thr
Pro Val Thr Ile
Pro Val Thr Leu
Ser Ile Ile Pro
Ser Ile Leu Pro
Ser Ile Pro Ile
Ser Ile Pro Leu
Ser Leu Ile Pro
Ser Leu Leu Pro
Ser Leu Pro Ile
Ser Leu Pro Leu
Ser Pro Ile Ile
Ser Pro Ile Leu
Ser Pro Leu Ile
Ser Pro Leu Leu
Thr Ile Pro Val
Thr Ile Val Pro
Thr Leu Pro Val
Thr Leu Val Pro
Thr Pro Ile Val
Thr Pro Leu Val
Thr Pro Val Ile
Thr Pro Val Leu
Thr Val Ile Pro
Thr Val Leu Pro
Thr Val Pro Ile
Thr Val Pro Leu
Val Ile Pro Thr
Val Ile Thr Pro
Val Leu Pro Thr
Val Leu Thr Pro
Val Pro Ile Thr
Val Pro Leu Thr
Val Pro Thr Ile
Val Pro Thr Leu
Val Thr Ile Pro
Val Thr Leu Pro
Val Thr Pro Ile
Val Thr Pro Leu
5-(3,5-dimethyl-4-octoxyphenyl)-3-hexylthiophene-2-carbaldehyde
C27H40O2S (428.27488600000004)
prostaglandin F2alpha 1-glyceryl ester
A 1-monoglyceride resulting from the condensation of the carboxy group of prostaglandin F2alpha with the 1-hydroxy group of glycerol.
1-[3-methyl-2-[[2-(methylamino)-1-oxopropyl]amino]-1-oxobutyl]-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-2-pyrrolidinecarboxamide
4-{[(4-Fluorophenyl)methyl]({[4-(2-methylpropoxy)phenyl]methyl}carbamoyl)amino}-1-methylpiperidin-1-ium
(all-E)-2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenedial
prostaglandin F2alpha 2-glyceryl ester
A 2-monoglyceride obtained by formal condensation of the carboxy group of prostaglandin F2alpha with the 2-hydroxy group of glycerol.
n-[1-(2-benzyl-3-methoxy-4-methyl-5-oxo-2h-pyrrol-1-yl)-3-methyl-1-oxobutan-2-yl]-2-methylhexanimidic acid
n-[(2r)-1-[(2s)-2-benzyl-3-methoxy-4-methyl-5-oxo-2h-pyrrol-1-yl]-3-methyl-1-oxobutan-2-yl]-2-methylhexanimidic acid
2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenedial
(2s)-1-[(2s,5r)-5-[(2r)-1-ethoxy-1-oxopropan-2-yl]oxolan-2-yl]butan-2-yl (2s)-2-[(2s,5r)-5-[(2r)-2-hydroxypropyl]oxolan-2-yl]propanoate
(4bs,6as,10as,10bs)-3-(2-carboxyethyl)-2-(carboxymethyl)-4b,7,7,10a-tetramethyl-4ah,5h,6h,6ah,8h,9h,10h,10bh,11h,12h-naphtho[2,1-f]isoquinolin-4a-yl
C26H38NO4 (428.28006880000004)