Exact Mass: 413.3056

Exact Mass Matches: 413.3056

Found 54 metabolites which its exact mass value is equals to given mass value 413.3056, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

3-Hydroxy-9-hexadecenoylcarnitine

(3S)-3-{[(9Z)-3-hydroxyhexadec-9-enoyl]oxy}-4-(trimethylazaniumyl)butanoic acid

C23H43NO5 (413.3141)


3-Hydroxy-9-hexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (9Z)-3-hydroxyhexadec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxy-9-hexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-hydroxy-9-hexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-hydroxy-9-hexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Hydroxypalmitoleoylcarnitine

3-{[(9Z)-3-hydroxyhexadec-9-enoyl]oxy}-4-(trimethylammonio)butanoic acid

C23H43NO5 (413.3141)


3-Hydroxypalmitoleoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxypalmitoleoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxypalmitoleoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Hydroxypalmitoleoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-Hydroxypalmitoleoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(10Z)-7-Hydroxyhexadecenoylcarnitine

3-[(7-hydroxyhexadec-10-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.3141)


(10Z)-7-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (10Z)-7-hydroxyhexadec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10Z)-7-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (10Z)-7-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (10Z)-7-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(3Z)-9-Hydroxyhexadecenoylcarnitine

3-[(9-hydroxyhexadec-3-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.3141)


(3Z)-9-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (3Z)-9-hydroxyhexadec-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (3Z)-9-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (3Z)-9-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (3Z)-9-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(6E)-9-Hydroxyhexadecenoylcarnitine

3-[(9-hydroxyhexadec-6-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.3141)


(6E)-9-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (6E)-9-hydroxyhexadec-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6E)-9-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (6E)-9-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (6E)-9-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(10Z)-12-Hydroxyhexadecenoylcarnitine

3-[(12-hydroxyhexadec-10-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.3141)


(10Z)-12-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (10Z)-12-hydroxyhexadec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10Z)-12-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (10Z)-12-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (10Z)-12-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(9Z)-12-Hydroxyhexadecenoylcarnitine

3-[(12-hydroxyhexadec-9-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.3141)


(9Z)-12-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (9Z)-12-hydroxyhexadec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9Z)-12-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (9Z)-12-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (9Z)-12-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E)-4-Hydroxyhexadecenoylcarnitine

3-[(4-hydroxyhexadec-2-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.3141)


(2E)-4-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-4-hydroxyhexadec-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-4-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2E)-4-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (2E)-4-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(8Z)-10-Hydroxyhexadecenoylcarnitine

3-[(10-hydroxyhexadec-8-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.3141)


(8Z)-10-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (8Z)-10-hydroxyhexadec-8-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (8Z)-10-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (8Z)-10-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (8Z)-10-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Oxohexadecanoylcarnitine

3-[(3-oxohexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.3141)


3-Oxohexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-oxohexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Oxohexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Oxohexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Stearoyl Glutamic acid

2-[(1-Hydroxyoctadecylidene)amino]pentanedioate

C23H43NO5 (413.3141)


N-stearoyl glutamic acid, also known as N-stearoyl glutamate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Glutamic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Glutamic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Glutamic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

hydroxyhexadecenoylcarnitine

hydroxyhexadecenoylcarnitine

C23H43NO5 (413.3141)


   

3-oxocholest-4-en-26-oate

(6R)-6-[(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-5-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl]-2-methylheptanoate

C27H41O3 (413.3056)


3-oxocholest-4-en-26-oate belongs to bile acids, alcohols and derivatives class of compounds. Those are organic compounds containing an alcohol or acid derivative of cholic acid. 3-oxocholest-4-en-26-oate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 3-oxocholest-4-en-26-oate can be found in a number of food items such as acerola, tamarind, chinese chives, and quince, which makes 3-oxocholest-4-en-26-oate a potential biomarker for the consumption of these food products.

   
   

N-stearoyl glutamic acid

N-octadecanoyl-glutamic acid

C23H43NO5 (413.3141)


   

N-oleoyl methionine

N-(9Z-octadecenoyl)-methionine

C23H43NO3S (413.2963)


   

CAR 16:1;O

(9Z)-3-hydroxyhexadec-9-enoylcarnitine;3-{[(9Z)-3-hydroxyhexadec-9-enoyl]oxy}-4-(trimethylammonio)butanoate

C23H43NO5 (413.3141)


   

NA 23:2;O4

N-octadecanoyl-glutamic acid

C23H43NO5 (413.3141)


   

(-)-7-octylindolactam v

(-)-7-octylindolactam v

C25H39N3O2 (413.3042)


   

Tetrabutylammonium 4-toluenesulfonate

Tetrabutylammonium 4-toluenesulfonate

C23H43NO3S (413.2963)


   

Stearoyl glutamic acid

N-(1-oxooctadecyl)-L-glutamic acid

C23H43NO5 (413.3141)


   

3-hydroxy-(9Z)-hexadecenoyl-L-carnitine

3-hydroxy-(9Z)-hexadecenoyl-L-carnitine

C23H43NO5 (413.3141)


A O-hydroxyhexadecenoyl-L-carnitine in which the acyl group specified is 3-hydroxy-(9Z)-hexadecenoyl.

   

3-oxocholest-4-en-26-oate

(6R)-6-[(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-5-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl]-2-methylheptanoate

C27H41O3- (413.3056)


3-oxocholest-4-en-26-oate belongs to bile acids, alcohols and derivatives class of compounds. Those are organic compounds containing an alcohol or acid derivative of cholic acid. 3-oxocholest-4-en-26-oate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 3-oxocholest-4-en-26-oate can be found in a number of food items such as acerola, tamarind, chinese chives, and quince, which makes 3-oxocholest-4-en-26-oate a potential biomarker for the consumption of these food products.

   

(25R)-3-oxocholest-4-en-26-oate

(25R)-3-oxocholest-4-en-26-oate

C27H41O3- (413.3056)


   

(25S)-3-oxocholest-4-en-26-oate

(25S)-3-oxocholest-4-en-26-oate

C27H41O3- (413.3056)


   

(2S,6E)-6-[(3S,8R,9S,10R,13S,14S)-3-hydroxy-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-ylidene]-2-methylheptanoate

(2S,6E)-6-[(3S,8R,9S,10R,13S,14S)-3-hydroxy-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-ylidene]-2-methylheptanoate

C27H41O3- (413.3056)


   

3-Hydroxy-9-hexadecenoylcarnitine

3-Hydroxy-9-hexadecenoylcarnitine

C23H43NO5 (413.3141)


   

3-Oxohexadecanoylcarnitine

3-Oxohexadecanoylcarnitine

C23H43NO5 (413.3141)


   

(3Z)-9-Hydroxyhexadecenoylcarnitine

(3Z)-9-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.3141)


   

(6E)-9-Hydroxyhexadecenoylcarnitine

(6E)-9-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.3141)


   

(2E)-4-Hydroxyhexadecenoylcarnitine

(2E)-4-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.3141)


   

(10Z)-7-Hydroxyhexadecenoylcarnitine

(10Z)-7-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.3141)


   

(9Z)-12-Hydroxyhexadecenoylcarnitine

(9Z)-12-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.3141)


   

(8Z)-10-Hydroxyhexadecenoylcarnitine

(8Z)-10-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.3141)


   

(10Z)-12-Hydroxyhexadecenoylcarnitine

(10Z)-12-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.3141)


   

(E)-3,19-dihydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]nonadec-5-enoate

(E)-3,19-dihydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]nonadec-5-enoate

C23H43NO5 (413.3141)


   

(25S)-Delta(7)-dafachronate

(25S)-Delta(7)-dafachronate

C27H41O3- (413.3056)


A steroid acid anion that is the conjugate base of (25S)-Delta(7)-dafachronic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(R)-3-oxopalmitoylcarnitine

(R)-3-oxopalmitoylcarnitine

C23H43NO5 (413.3141)


   

(25R)-Delta(7)-dafachronate

(25R)-Delta(7)-dafachronate

C27H41O3- (413.3056)


   

3-(3-Hydroxyhexadec-9-enoyloxy)-4-(trimethylazaniumyl)butanoate

3-(3-Hydroxyhexadec-9-enoyloxy)-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.3141)


   

NAGly 10:0/11:0

NAGly 10:0/11:0

C23H43NO5 (413.3141)


   

NAGly 11:0/10:0

NAGly 11:0/10:0

C23H43NO5 (413.3141)


   

(25S)-Delta(4)-dafachronate

(25S)-Delta(4)-dafachronate

C27H41O3 (413.3056)


A steroid acid anion that is the conjugate base of (25S)-Delta(4)-dafachronic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

3-hydroxypalmitoleoylcarnitine

3-hydroxypalmitoleoylcarnitine

C23H43NO5 (413.3141)


An O-acylcarnitine having 3-hydroxypalmitoleoyl as the acyl substituent.

   

Delta(4)-dafachronate

Delta(4)-dafachronate

C27H41O3- (413.3056)


   

O-(hydroxyhexadecenoyl)carnitine

O-(hydroxyhexadecenoyl)carnitine

C23H43NO5 (413.3141)


An O-acylcarnitine having a hydroxyhexadecenoyl group as the acyl substituent in which the position of the hydroxy group and the double bond is unspecified.

   

O-hydroxyhexadecenoyl-L-carnitine

O-hydroxyhexadecenoyl-L-carnitine

C23H43NO5 (413.3141)


An O-acyl-L-carnitine that is L-carnitine having a hydroxyhexadecenoyl group as the acyl substituent in which the position of the hydroxy group and the double bond is unspecified.

   

CarE(16:1)

CarE(16:1(1+O))

C23H43NO5 (413.3141)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   

NA-Cys 20:1(11Z)

NA-Cys 20:1(11Z)

C23H43NO3S (413.2963)


   
   

NA-Met 18:1(9Z)

NA-Met 18:1(9Z)

C23H43NO3S (413.2963)