Exact Mass: 397.2828

Exact Mass Matches: 397.2828

Found 24 metabolites which its exact mass value is equals to given mass value 397.2828, within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error 0.0002 dalton.

PGF2a ethanolamide

(5E)-7-[(1R,2R,3R,5S)-3,5-Dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-N-(2-hydroxyethyl)hept-5-enimidate

C22H39NO5 (397.2828)


PGF2a ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249) [HMDB] PGF2a ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249).

   

N-Oleoyl Aspartic acid

2-(octadec-9-enamido)butanedioic acid

C22H39NO5 (397.2828)


N-oleoyl aspartic acid, also known as N-oleoyl aspartate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Oleic acid amide of Aspartic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Oleoyl Aspartic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Oleoyl Aspartic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

AMP-Deoxynojirimycin

2R-(hydroxymethyl)-1-[5-(tricyclo[3.3.2.13,7]dec-1-ylmethoxy)pentyl]-3R,4R,5S-piperidinetriol

C22H39NO5 (397.2828)


   
   

CHEMBL4559665

CHEMBL4559665

C22H39NO5 (397.2828)


   

Alprostadil ethanolamide

Alprostadil ethanolamide

C22H39NO5 (397.2828)


   

PGF2α-EA

N-(9S,11R,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine

C22H39NO5 (397.2828)


   

Ethanolamide

N-(2-hydroxyethyl)-9α,11β,15S-trihydroxy-prosta-5Z,13E-dien-1-amide

C22H39NO5 (397.2828)


   

AMP-Deoxynojirimycin

2R-(hydroxymethyl)-1-[5-(tricyclo[3.3.2.13,7]dec-1-ylmethoxy)pentyl]-3R,4R,5S-piperidinetriol

C22H39NO5 (397.2828)


   

Prostaglandin E1 Ethanolamide

N-(2-hydroxyethyl)-9-oxo-11α,15S-dihydroxy-prost-13E-en-1-amide

C22H39NO5 (397.2828)


   

PGF2alpha-EA(d4)

N-(9S,11R,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine(d4)

C22H39NO5 (397.2828)


   

11beta-PGF2alpha-EA

N-(9S,11S,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine

C22H39NO5 (397.2828)


   

8-iso-PGF2alpha III-EA

N-([8S,12R]9S,11R,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine

C22H39NO5 (397.2828)


   

PGE1-EA

N-(9-oxo-11R,15S-dihydroxy-13E-prostenoyl)-ethanolamine

C22H39NO5 (397.2828)


   

PMF2alpha

N-(9S,11R,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine

C22H39NO5 (397.2828)


   

PGF2alpha-ethanolamine(d4)

PGF2alpha-ethanolamine(d4)

C22H39NO5 (397.2828)


   

N-Oleoyl Aspartic acid

N-Oleoyl Aspartic acid

C22H39NO5 (397.2828)


   

PGF2a ethanolamide

PGF2a ethanolamide

C22H39NO5 (397.2828)


   
   

NA-2AAA 16:1(9Z)

NA-2AAA 16:1(9Z)

C22H39NO5 (397.2828)


   

NA-Asp 18:1(9Z)

NA-Asp 18:1(9Z)

C22H39NO5 (397.2828)


   

NA-Glu 17:1(9Z)

NA-Glu 17:1(9Z)

C22H39NO5 (397.2828)


   
   

n-[(2s)-1-{[(2s)-1-[(2s,3s)-3-hexyl-4-oxooxetan-2-yl]heptan-2-yl]oxy}-3-methyl-1-oxobutan-2-yl]carboximidic acid

n-[(2s)-1-{[(2s)-1-[(2s,3s)-3-hexyl-4-oxooxetan-2-yl]heptan-2-yl]oxy}-3-methyl-1-oxobutan-2-yl]carboximidic acid

C22H39NO5 (397.2828)