Exact Mass: 387.2926
Exact Mass Matches: 387.2926
Found 35 metabolites which its exact mass value is equals to given mass value 387.2926
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
2-Hydroxymyristoylcarnitine
2-Hydroxymyristoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxymyristic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxymyristoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 2-hydroxymyristoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 2-hydroxymyristoylcarnitine is elevated in the blood or plasma of individuals with CVD in type 2 diabetes mellitus (PMID: 32431666). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. A human metabolite taken as a putative food compound of mammalian origin [HMDB]
3-Hydroxytetradecanoyl carnitine
3-Hydroxytetradecanoyl carnitine is an acylcarnitine. More specifically, it is an 3-hydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxytetradecanoyl carnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-hydroxytetradecanoyl carnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-hydroxytetradecanoyl carnitine is elevated in the blood or plasma of individuals with CVD in type 2 diabetes mellitus (PMID: 32431666). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Deoxyspergualin
Tresperimus
Gusperimus
L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants D020011 - Protective Agents > D011837 - Radiation-Protective Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents
CAR 14:0;O
Deoxyspergualin
D020011 - Protective Agents > D011837 - Radiation-Protective Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents
(2S)-6-amino-2-[[(2S,3S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-methylpentanoyl]amino]hexanoic acid
3-hydroxytetradecanoylcarnitine
An O-acylcarnitine having 3-hydroxytetradecanoyl as the acyl substituent.
CarE(14:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved