Exact Mass: 367.2742034

Exact Mass Matches: 367.2742034

Found 110 metabolites which its exact mass value is equals to given mass value 367.2742034, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

3, 5-Tetradecadiencarnitine

(3S)-3-[(3E,5E)-Tetradeca-3,5-dienoyloxy]-4-(trimethylazaniumyl)butanoic acid

C21H37NO4 (367.27224420000005)


3, 5-Tetradecadiencarnitine is an acylcarnitine. More specifically, it is an (3E,5E)-tetradeca-3,5-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3, 5-Tetradecadiencarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3, 5-tetradecadiencarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3, 5-tetradecadiencarnitine is elevated in the blood or plasma of individuals with CVD in type 2 diabetes mellitus (PMID: 32431666). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Oleoyl GABA

4-{[(9Z)-1-hydroxyoctadec-9-en-1-ylidene]amino}butanoic acid

C22H41NO3 (367.3086276)


N-Oleoyl GABA is considered to be practically insoluble (in water) and acidic. N-Oleoyl GABA is a fatty amide lipid molecule

   

(5Z,8Z)-Tetradecadienoylcarnitine

3-[(5Z,8Z)-Tetradeca-5,8-dienoyloxy]-4-(trimethylammonio)butanoic acid

C21H37NO4 (367.27224420000005)


(5Z,8Z)-Tetradecadienoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,8Z)-tetradecadienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,8Z)-Tetradecadienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z,8Z)-Tetradecadienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (5Z,8Z)-Tetradecadienoylcarnitine is elevated in the blood or plasma of individuals with insulin resistance, type 2 diabetes (PMID: 24358186) and Alzheimer disease (PMID: 31785839). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(10Z,12E)-Tetradecadienoylcarnitine

3-(Tetradeca-10,12-dienoyloxy)-4-(trimethylazaniumyl)butanoic acid

C21H37NO4 (367.27224420000005)


(10Z,12E)-Tetradecadienoylcarnitine is an acylcarnitine. More specifically, it is an (10Z,12E)-tetradeca-10,12-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10Z,12E)-Tetradecadienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (10Z,12E)-Tetradecadienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (10Z,12E)-Tetradecadienoylcarnitine is elevated in the blood or plasma of individuals with insulin resistance, type 2 diabetes (PMID: 24358186) and Alzheimer disease (PMID: 31785839). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(6Z,9Z)-Tetradecadienoylcarnitine

3-(Tetradeca-6,9-dienoyloxy)-4-(trimethylazaniumyl)butanoic acid

C21H37NO4 (367.27224420000005)


(6Z,9Z)-Tetradecadienoylcarnitine is an acylcarnitine. More specifically, it is an (6Z,9Z)-tetradeca-6,9-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6Z,9Z)-Tetradecadienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (6Z,9Z)-Tetradecadienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (6Z,9Z)-Tetradecadienoylcarnitine is elevated in the blood or plasma of individuals with insulin resistance, type 2 diabetes (PMID: 24358186) and Alzheimer disease (PMID: 31785839). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E,4E)-Tetradecadienoylcarnitine

3-(Tetradeca-2,4-dienoyloxy)-4-(trimethylazaniumyl)butanoic acid

C21H37NO4 (367.27224420000005)


(2E,4E)-Tetradecadienoylcarnitine is an acylcarnitine. More specifically, it is an (2E,4E)-tetradeca-2,4-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E,4E)-Tetradecadienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2E,4E)-Tetradecadienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (2E,4E)-Tetradecadienoylcarnitine is elevated in the blood or plasma of individuals with insulin resistance, type 2 diabetes (PMID: 24358186) and Alzheimer disease (PMID: 31785839). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-(3-Methyl-5-pentylfuran-2-yl)propanoylcarnitine

3-{[3-(3-methyl-5-pentylfuran-2-yl)propanoyl]oxy}-4-(trimethylazaniumyl)butanoate

C20H33NO5 (367.23586080000007)


3-(3-methyl-5-pentylfuran-2-yl)propanoylcarnitine is an acylcarnitine. More specifically, it is an 3-(3-methyl-5-pentylfuran-2-yl)propanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-(3-methyl-5-pentylfuran-2-yl)propanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-(3-methyl-5-pentylfuran-2-yl)propanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Linoleoyl Serine

3-Hydroxy-2-[(1-hydroxyoctadeca-9,12-dien-1-ylidene)amino]propanoate

C21H37NO4 (367.27224420000005)


N-linoleoyl serine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Linoleic acid amide of Serine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Linoleoyl Serine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Linoleoyl Serine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

Blonanserin

2-(4-Ethyl-1-piperazinyl)-4-(4-fluorophenyl)-5,6,7,8,9,10-hexahydrocycloocta(b)pyridine

C23H30FN3 (367.2423632)


C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist Blonanserin (AD-5423) is a potent?and orally active 5-HT2A?(Ki=0.812 nM) and?dopamine D2?receptor?(Ki =0.142?nM)?antagonist. Blonanserin is usually acts as an atypical antipsychotic?agent and can be used for the research of extrapyramidal symptoms, excessive?sedation, or?hypotension[1].

   

Tetradecadienoylcarnitine

3-Hydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]heptadeca-5,7-dienoic acid

C21H37NO4 (367.27224420000005)


   

Macamide

9,12,15-Octadecatrienamide, N-(phenylmethyl)-, (9Z,12Z,15Z)-

C25H37NO (367.2874992)


n-Benzyl-(9z,12z,15z)-octadecatrienamide is a natural product found in Lepidium meyenii and Heliopsis helianthoides with data available. See also: Lepidium meyenii root (part of). N-?Benzyllinolenamide is a natural macamide isolated from Lepidium meyenii, acts as an inhibitor of fatty acid amide hydrolase (FAAH) with an IC50 of 41.8 μM[1]. N-?Benzyllinolenamide is a natural macamide isolated from Lepidium meyenii, acts as an inhibitor of fatty acid amide hydrolase (FAAH) with an IC50 of 41.8 μM[1].

   

(Z)-1-Methyl-2-(pentadec-9-enyl)quinolin-4-one

(Z)-1-Methyl-2-(pentadec-9-enyl)quinolin-4-one

C25H37NO (367.2874992)


   

Cyclomicrobuxeine

Cyclomicrobuxeine

C25H37NO (367.2874992)


   
   

Na-Demethylsemperviraminone

(+)-Na-Demethylsemperviraminone

C25H37NO (367.2874992)


   

(-)-OE-Cyclobuxaphylamine

(-)-OE-Cyclobuxaphylamine

C25H37NO (367.2874992)


   

(-)-3-O-Acetylspectaline

(-)-3-O-Acetylspectaline

C22H41NO3 (367.3086276)


   
   
   
   

(+)-Cyclobuxomicreinine|Cyclobuxomicreinine

(+)-Cyclobuxomicreinine|Cyclobuxomicreinine

C25H37NO (367.2874992)


   

10b-(2-Methylbut-3-en-2-yl)-3-(2-methylpropyl)-6,10b,11,11a-tetrahydro-2H-pyrazino[1,2:1,5]pyrrolo[2,3-b]indole-1,4(3H,5aH)-dione

10b-(2-Methylbut-3-en-2-yl)-3-(2-methylpropyl)-6,10b,11,11a-tetrahydro-2H-pyrazino[1,2:1,5]pyrrolo[2,3-b]indole-1,4(3H,5aH)-dione

C22H29N3O2 (367.2259654)


   

(2S,3R)-2-Hydroxy-2-isopropyl-3-tigloyloxy-buttersaeure-((7aR)-(7ar)-hexahydropyrrolizin-1t-ylmethylester)|(2S,3R)-2-hydroxy-2-isopropyl-3-tigloyloxy-butyric acid-((7aR)-(7ar)-hexahydropyrrolizin-1t-ylmethyl ester)

(2S,3R)-2-Hydroxy-2-isopropyl-3-tigloyloxy-buttersaeure-((7aR)-(7ar)-hexahydropyrrolizin-1t-ylmethylester)|(2S,3R)-2-hydroxy-2-isopropyl-3-tigloyloxy-butyric acid-((7aR)-(7ar)-hexahydropyrrolizin-1t-ylmethyl ester)

C20H33NO5 (367.23586080000007)


   

{2-[5-(4-Aethoxy-3-methoxy-phenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-aethyl}-dimethyl-amin|{2-[5-(4-ethoxy-3-methoxy-phenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-ethyl}-dimethyl-amine

{2-[5-(4-Aethoxy-3-methoxy-phenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-aethyl}-dimethyl-amin|{2-[5-(4-ethoxy-3-methoxy-phenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-ethyl}-dimethyl-amine

C22H29N3O2 (367.2259654)


   

1-methyl-2-pentadec-6-enyl-4( 1h)-quinolone

1-methyl-2-pentadec-6-enyl-4( 1h)-quinolone

C25H37NO (367.2874992)


   

4(1H)-Quinolinone, 1-methyl-2-(10Z)-10-pentadecenyl-

4(1H)-Quinolinone, 1-methyl-2-(10Z)-10-pentadecenyl-

C25H37NO (367.2874992)


   

ethyl tumonoate A

ethyl tumonoate A

C21H37NO4 (367.27224420000005)


A natural product found particularly in Oscillatoria margaritifera and Oscillatoria margaritifera.

   

1-methyl-2-[(Z)-5-pentadecenyl]-4(1H)-quinolone|1-methyl-2-[(Z)-5?-pentadecenyl]-4(1H)-quinolone

1-methyl-2-[(Z)-5-pentadecenyl]-4(1H)-quinolone|1-methyl-2-[(Z)-5?-pentadecenyl]-4(1H)-quinolone

C25H37NO (367.2874992)


   
   

Cyclosuffrobuxin|Cyclosuffrobuxine K

Cyclosuffrobuxin|Cyclosuffrobuxine K

C25H37NO (367.2874992)


   

N-(2-OXOOXOLAN-3-YL)OCTADECANAMIDE

N-(2-OXOOXOLAN-3-YL)OCTADECANAMIDE

C22H41NO3 (367.3086276)


   

Blonanserin

Blonanserin (Lonasen)

C23H30FN3 (367.2423632)


C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist Blonanserin (AD-5423) is a potent?and orally active 5-HT2A?(Ki=0.812 nM) and?dopamine D2?receptor?(Ki =0.142?nM)?antagonist. Blonanserin is usually acts as an atypical antipsychotic?agent and can be used for the research of extrapyramidal symptoms, excessive?sedation, or?hypotension[1].

   
   

C17 Sphinganine-1-phosphate

heptadecasphinganine-1-phosphate

C17H38NO5P (367.24874680000005)


   

PGF2&alpha

N,N,-dimethyl-9α,11α,15S-trihydroxy-prosta-5Z,13E-dien-1-amine

C22H41NO3 (367.3086276)


   

N-octadecanoyl-L-Homoserine lactone

N-[(3S)-tetrahydro-2-oxo-3-furanyl]-octadecanamide

C22H41NO3 (367.3086276)


   

N-oleoyl GABA

N-(9Z-octadecenoyl)-gamma-aminobutyric acid

C22H41NO3 (367.3086276)


   

PGE2alpha dimethyl amine

1-dimethylamino-9S,11R,15S-trihydroxy-5Z,13E-prostadiene

C22H41NO3 (367.3086276)


   

CAR 14:2

3-[(5Z,8Z)-tetradeca-5,8-dienoyloxy]-4-(trimethylammonio)butanoate;5-cis,8cis-tetradecadienoylcarnitine

C21H37NO4 (367.27224420000005)


   

NA 22:2;O2

N-(9Z-octadecenoyl)-gamma-aminobutyric acid

C22H41NO3 (367.3086276)


   

C18-HSL

N-(octadecanoyl)-homoserine lactone

C22H41NO3 (367.3086276)


   

SPBP 17:0;O2

heptadecasphinganine-1-phosphate

C17H38NO5P (367.24874680000005)


   

2-(2H-Benzotriazol-2-yl)-4,6-bis(tert-pentyl)phenol N-oxide

2-(2H-Benzotriazol-2-yl)-4,6-bis(tert-pentyl)phenol N-oxide

C22H29N3O2 (367.2259654)


   

Benzalkonium chloride

Quaternary ammonium compounds, benzyl-C12-16-alkyldimethyl, chlorides

C23H42ClN (367.30056020000006)


D013501 - Surface-Active Agents > D003902 - Detergents > D001548 - Benzalkonium Compounds C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent

   

benzyl-dimethyl-tetradecan-2-ylazanium,chloride

benzyl-dimethyl-tetradecan-2-ylazanium,chloride

C23H42ClN (367.30056020000006)


   

Dodecyl(ethylbenzyl)dimethylammonium chloride

Dodecyl(ethylbenzyl)dimethylammonium chloride

C23H42ClN (367.30056020000006)


   
   

1-TERT-BUTYL-2,2,4,4,4-PENTAKIS(DIMETHYLAMINO)-2LAMBDA5,4LAMBDA5-CATENADI(PHOSPHAZENE)

1-TERT-BUTYL-2,2,4,4,4-PENTAKIS(DIMETHYLAMINO)-2LAMBDA5,4LAMBDA5-CATENADI(PHOSPHAZENE)

C14H39N7P2 (367.2742034)


   

6-methylheptyl prop-2-enoate,N-(2,4,4-trimethylpentan-2-yl)prop-2-enamide

6-methylheptyl prop-2-enoate,N-(2,4,4-trimethylpentan-2-yl)prop-2-enamide

C22H41NO3 (367.3086276)


   
   

(S)-2-(((TERT-BUTYLDIMETHYLSILYL)OXY)DIPHENYLMETHYL)PYRROLIDINE

(S)-2-(((TERT-BUTYLDIMETHYLSILYL)OXY)DIPHENYLMETHYL)PYRROLIDINE

C23H33NOSi (367.23312880000003)


   

(9Z,12Z)-N,N-bis(2-hydroxyethyl)octadeca-9,12-dien-1-amide

(9Z,12Z)-N,N-bis(2-hydroxyethyl)octadeca-9,12-dien-1-amide

C22H41NO3 (367.3086276)


   

(1R,2S,5S)-3-((S)-2-(3-tert-butylureido)-3,3-dimethylbutanoyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxylic acid

(1R,2S,5S)-3-((S)-2-(3-tert-butylureido)-3,3-dimethylbutanoyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxylic acid

C19H33N3O4 (367.2470938000001)


   

N-(4-Ethylbenzyl)-N,N-dimethyl-1-dodecanaminium chloride

N-(4-Ethylbenzyl)-N,N-dimethyl-1-dodecanaminium chloride

C23H42ClN (367.30056020000006)


   

S-2-[diphenyl[(triethylsilyl)oxy]Methyl]-Pyrrolidine

S-2-[diphenyl[(triethylsilyl)oxy]Methyl]-Pyrrolidine

C23H33NOSi (367.23312880000003)


   

Tricyclohexylphosphonium tetrafluoroborate

Tricyclohexylphosphonium tetrafluoroborate

C18H33BF4P (367.2348926)


   
   

N-Oleoyl-4-aminobutyric acid

N-Oleoyl-4-aminobutyric acid

C22H41NO3 (367.3086276)


   

N-Dimethylaminoprostaglandin F2alpha

N-Dimethylaminoprostaglandin F2alpha

C22H41NO3 (367.3086276)


   

N-[[3-(dimethylamino)phenyl]methyl]-1-[2-(4-methoxyphenyl)ethyl]piperidin-4-amine

N-[[3-(dimethylamino)phenyl]methyl]-1-[2-(4-methoxyphenyl)ethyl]piperidin-4-amine

C23H33N3O (367.26234880000004)


   

N-[(3S)-Tetrahydro-2-oxo-3-furanyl]octadecanamide

N-[(3S)-Tetrahydro-2-oxo-3-furanyl]octadecanamide

C22H41NO3 (367.3086276)


   

fumigaclavine C(1+)

fumigaclavine C(1+)

C23H31N2O2+ (367.23854059999996)


An ammonium ion obtained by the protonation of the tertiary amino group of fumigaclavine C; major species at pH 7.3.

   

(3E,5E)-tetradecadienoylcarnitine

(3E,5E)-tetradecadienoylcarnitine

C21H37NO4 (367.27224420000005)


   

3-(3-Methyl-5-pentylfuran-2-yl)propanoylcarnitine

3-(3-Methyl-5-pentylfuran-2-yl)propanoylcarnitine

C20H33NO5 (367.23586080000007)


   

(5E,7E)-3-hydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]heptadeca-5,7-dienoate

(5E,7E)-3-hydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]heptadeca-5,7-dienoate

C21H37NO4 (367.27224420000005)


   

3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]propanoic acid

3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]propanoic acid

C21H37NO4 (367.27224420000005)


   

(6Z,9Z)-Tetradecadienoylcarnitine

(6Z,9Z)-Tetradecadienoylcarnitine

C21H37NO4 (367.27224420000005)


   

(2E,4E)-Tetradecadienoylcarnitine

(2E,4E)-Tetradecadienoylcarnitine

C21H37NO4 (367.27224420000005)


   

(10Z,12E)-Tetradecadienoylcarnitine

(10Z,12E)-Tetradecadienoylcarnitine

C21H37NO4 (367.27224420000005)


   
   

N-(1-adamantylmethyl)-2-ethyl-3-methoxy-6-indazolecarboxamide

N-(1-adamantylmethyl)-2-ethyl-3-methoxy-6-indazolecarboxamide

C22H29N3O2 (367.2259654)


   

N-[1-(4-Butyl-phenyl)-ethylidene]-N-(2-methyl-6-morpholin-4-yl-pyrimidin-4-yl)-hydrazine

N-[1-(4-Butyl-phenyl)-ethylidene]-N-(2-methyl-6-morpholin-4-yl-pyrimidin-4-yl)-hydrazine

C21H29N5O (367.2371984)


   

15-Methylhexadecasphinganine 1-phosphate

15-Methylhexadecasphinganine 1-phosphate

C17H38NO5P (367.24874680000005)


   
   

5-[[(2E,12E,15R)-15-hydroxyhexadeca-2,12-dienoyl]amino]pentanoic acid

5-[[(2E,12E,15R)-15-hydroxyhexadeca-2,12-dienoyl]amino]pentanoic acid

C21H37NO4 (367.27224420000005)


   

N-[(4E,8E)-1,3-dihydroxyhexadeca-4,8-dien-2-yl]hexanamide

N-[(4E,8E)-1,3-dihydroxyhexadeca-4,8-dien-2-yl]hexanamide

C22H41NO3 (367.3086276)


   

N-[(4E,8E)-1,3-dihydroxyicosa-4,8-dien-2-yl]acetamide

N-[(4E,8E)-1,3-dihydroxyicosa-4,8-dien-2-yl]acetamide

C22H41NO3 (367.3086276)


   

N-[(4E,8E)-1,3-dihydroxytetradeca-4,8-dien-2-yl]octanamide

N-[(4E,8E)-1,3-dihydroxytetradeca-4,8-dien-2-yl]octanamide

C22H41NO3 (367.3086276)


   

N-[(4E,8E)-1,3-dihydroxyoctadeca-4,8-dien-2-yl]butanamide

N-[(4E,8E)-1,3-dihydroxyoctadeca-4,8-dien-2-yl]butanamide

C22H41NO3 (367.3086276)


   

(Z)-N-[(E)-1,3-dihydroxyoct-4-en-2-yl]tetradec-9-enamide

(Z)-N-[(E)-1,3-dihydroxyoct-4-en-2-yl]tetradec-9-enamide

C22H41NO3 (367.3086276)


   

N-[(4E,8E)-1,3-dihydroxyheptadeca-4,8-dien-2-yl]pentanamide

N-[(4E,8E)-1,3-dihydroxyheptadeca-4,8-dien-2-yl]pentanamide

C22H41NO3 (367.3086276)


   

N-[(4E,8E)-1,3-dihydroxypentadeca-4,8-dien-2-yl]heptanamide

N-[(4E,8E)-1,3-dihydroxypentadeca-4,8-dien-2-yl]heptanamide

C22H41NO3 (367.3086276)


   

(Z)-N-[(E)-1,3-dihydroxynon-4-en-2-yl]tridec-9-enamide

(Z)-N-[(E)-1,3-dihydroxynon-4-en-2-yl]tridec-9-enamide

C22H41NO3 (367.3086276)


   

N-[(4E,8E)-1,3-dihydroxynonadeca-4,8-dien-2-yl]propanamide

N-[(4E,8E)-1,3-dihydroxynonadeca-4,8-dien-2-yl]propanamide

C22H41NO3 (367.3086276)


   

N-[(4E,8E)-1,3-dihydroxytrideca-4,8-dien-2-yl]nonanamide

N-[(4E,8E)-1,3-dihydroxytrideca-4,8-dien-2-yl]nonanamide

C22H41NO3 (367.3086276)


   

N-[(4E,8E)-1,3-dihydroxydodeca-4,8-dien-2-yl]decanamide

N-[(4E,8E)-1,3-dihydroxydodeca-4,8-dien-2-yl]decanamide

C22H41NO3 (367.3086276)


   

alpha-(4-Dimethylaminophenyl)-omega-(9-phenanthryl)pentane

alpha-(4-Dimethylaminophenyl)-omega-(9-phenanthryl)pentane

C27H29N (367.2299874)


   

(5Z,8Z)-tetradecadienoylcarnitine

(5Z,8Z)-tetradecadienoylcarnitine

C21H37NO4 (367.27224420000005)


An O-tetradecadienoylcarnitine having (5Z,8Z)-tetradecadienoyl as the acyl substituent.

   

prostaglandin F2alpha dimethylamine

prostaglandin F2alpha dimethylamine

C22H41NO3 (367.3086276)


A member of the class of prostaglandins Falpha that is the dimethylamine derivative of prostaglandin F2alpha.

   

O-tetradecadienoylcarnitine

O-tetradecadienoylcarnitine

C21H37NO4 (367.27224420000005)


An O-acylcarnitine in which the acyl group specified is tetradecadienoyl.

   

O-tetradecadienoyl-L-carnitine

O-tetradecadienoyl-L-carnitine

C21H37NO4 (367.27224420000005)


An O-acyl-L-carnitine that is L-carnitine having a tetradecadienoyl group as the acyl substituent in which the positions of the two double bonds are unspecified.