Exact Mass: 356.274657
Exact Mass Matches: 356.274657
Found 72 metabolites which its exact mass value is equals to given mass value 356.274657
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
DHA ethyl ester
C26170 - Protective Agent > C275 - Antioxidant
Tetracosahexaenoic acid
The formation of docosahexaenoic acid(DHA) involves the production of tetracosahexaenoic acid C24:6n-3) from dietary linolenic acid (C18:3n-3) via a series of elongation and desaturation reactions, followed by beta-oxidation of C24:6n-3 to C22:6n-3. DHA is deficient in patients lacking peroxisomes.(PMID: 11734571). The formation of docosahexaenoic acid(DHA) involves the production of tetracosahexaenoic acid C24:6n-3) from dietary linolenic acid (C18:3n-3) via a series of elongation and desaturation reactions, followed by beta-oxidation of C24:6n-3 to C22:6n-3.
Tetracosahexaenoic acid (24:6n-3)
6,9,12,15,18,21-Tetracosahexaenoic acid (24:6n-3) is one of the n-3 PUFA and is a very long chain fatty acid. Distribution of 24:6n-3 in marine organisms was investigated by several researchers. Takagi et al. reported relatively high contents of 24:6n-3 in sea lilies and brittle stars (4–10\\% of total fatty acids). High 24:6n-3 content was also found in marine coelenterates. In some edible fishes, 24:6n-3 was detected at significant levels (0–10\\% of total fatty acids).The existence of 24:6n-3 in mammalian tissues was reported with other very long chain fatty acids in the spermatozoa,the retina, and the brain. Voss et al. reported that 24:6n-3 is formed as an intermediate in the metabolic pathway from 20:5n-3 to 22:6n-3 in rat liver. Even though 24:6n-3 is a PUFA existing in fish and mammalian species, physiological functions of 24:6n-3 have not been studied. As functions to be studied, anti-inflammatory and antiallergic. effects of 24:6n-3 are noteworthy because these events are known to be closely related to the unsaturated fatty acid metabolism such as in the arachidonic acid cascade, and 20:5n-3 and 22:6n-3 were reported to suppress inflammatory actions by influencing arachidonic acid metabolism.s24:6n-3 could inhibit the antigen-stimulated production of LT-related compounds as well as other n-3 polyunsaturated fatty acids (PUFA) such as eicosapentaenoic. acid (20:5n-3) and docosahexaenoic acid (22:6n-3), which are major n-3 PUFA in fish oils; 24:6n-3 was also shown to reduce the histamine content in MC/9 cells at 25 uM (27\\% reduction from the control), and the effect was diminished with increase of the fatty acid concentration (up to 100 uM). These two n-3 PUFA, 20:5n-3 and 22:6n-3, also reduced the histamine content (16 and 20\\% reduction at 25 μM, respectively), whereas arachidonic acid (20:4n-6) increased it (18\\% increase at 25 μM).
Tetracosahexaenoic acid, n-3
This compound belongs to the family of Straight Chain Fatty Acids. These are fatty acids with a straight aliphatic chain.
N-Lauroyl Arginine
N-lauroyl arginine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Arginine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Arginine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Arginine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Myristoyl Glutamine
N-myristoyl glutamine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Glutamine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Glutamine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Glutamine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
2,4,6,8,10,12-Docosahexaenoic acid, ethyl ester
Neogrifolin dimethyl ether
5-heptadeca-8(Z),11(Z),14(Z)-trienylresorsinol monomethyl ether
4,7,10,13,16,19-docosahexaenoic acid ethyl ester
N-[3-(1-azepanyl)propyl]-2-cyclohexyl-2-phenylacetamide
[3-carboxy-2-[(E)-tridec-8-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-3-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-5-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-11-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-2-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-4-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-6-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-9-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-7-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-10-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
(R)-6-(tert-Butyldimethylsilyloxy)-8-pivaloyloxy-2-methyl-2-octene
(1S)-1-hydroxy-23,24-didehydro-25,26,27-trinorcalciol
(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosahexaenoic acid
A very long-chain polyunsaturated fatty acid that is tetracosanoic acid having six double bonds located at positions 6, 9, 12, 15, 18 and 21 (the (6Z,9Z,12Z,15Z,18Z,21Z-isomer).
(1r,2s,5s,9r,12s,13r,16s)-16-(dimethylamino)-6,13-dimethyl-7-azapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icosa-7,18-dien-8-ol
1-{7-hydroxy-3a,6,6,9a,11a-pentamethyl-3h,3bh,4h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-1-yl}ethanone
3alpha-hydroxy-4,4,14alpha-trimethyl-delta2-5alpha-pregnen-20-one
{"Ingredient_id": "HBIN007944","Ingredient_name": "3alpha-hydroxy-4,4,14alpha-trimethyl-delta2-5alpha-pregnen-20-one","Alias": "NA","Ingredient_formula": "C24H36O2","Ingredient_Smile": "CC(=O)C1CCC2(C1(CCC3C2CC=C4C3(CC=C(C4(C)C)O)C)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "31285","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}