Exact Mass: 341.178
Exact Mass Matches: 341.178
Found 133 metabolites which its exact mass value is equals to given mass value 341.178
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
7-Acetylintermedine
7-acetylintermedine belongs to alkaloids and derivatives class of compounds. Those are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic propertiesand is also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. 7-acetylintermedine is soluble (in water) and a very weakly acidic compound (based on its pKa). 7-acetylintermedine can be found in borage, which makes 7-acetylintermedine a potential biomarker for the consumption of this food product.
7-Acetyllycopsamine
7-acetyllycopsamine is soluble (in water) and a very weakly acidic compound (based on its pKa). 7-acetyllycopsamine can be found in borage, which makes 7-acetyllycopsamine a potential biomarker for the consumption of this food product. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2277
N1-(2-Methoxy-4-methylbenzyl)-n2-(2-(5-methylpyridin-2-yl)ethyl)oxalamide
N1-(2-Methoxy-4-methylbenzyl)-n2-(2-(5-methylpyridin-2-yl)ethyl)oxalamide is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
3,4-Dimethylideneoctanedioylcarnitine
3,4-Dimethylideneoctanedioylcarnitine is an acylcarnitine. More specifically, it is an 3,4-dimethylideneoctanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,4-Dimethylideneoctanedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,4-Dimethylideneoctanedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
2,3-Dimethylideneoctanedioylcarnitine
2,3-Dimethylideneoctanedioylcarnitine is an acylcarnitine. More specifically, it is an 2,3-dimethylideneoctanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2,3-Dimethylideneoctanedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2,3-Dimethylideneoctanedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Deca-5,8-dienedioylcarnitine
Deca-5,8-dienedioylcarnitine is an acylcarnitine. More specifically, it is an deca-5,8-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Deca-5,8-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Deca-5,8-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2Z,4E)-Deca-2,4-dienedioylcarnitine
(2Z,4E)-Deca-2,4-dienedioylcarnitine is an acylcarnitine. More specifically, it is an (2Z,4E)-deca-2,4-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2Z,4E)-Deca-2,4-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2Z,4E)-Deca-2,4-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Deca-3,8-dienedioylcarnitine
Deca-3,8-dienedioylcarnitine is an acylcarnitine. More specifically, it is an deca-3,8-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Deca-3,8-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Deca-3,8-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Deca-2,8-dienedioylcarnitine
Deca-2,8-dienedioylcarnitine is an acylcarnitine. More specifically, it is an deca-2,8-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Deca-2,8-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Deca-2,8-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Deca-4,7-dienedioylcarnitine
Deca-4,7-dienedioylcarnitine is an acylcarnitine. More specifically, it is an deca-4,7-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Deca-4,7-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Deca-4,7-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Deca-5,7-dienedioylcarnitine
Deca-5,7-dienedioylcarnitine is an acylcarnitine. More specifically, it is an deca-5,7-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Deca-5,7-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Deca-5,7-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Deca-4,6-dienedioylcarnitine
Deca-4,6-dienedioylcarnitine is an acylcarnitine. More specifically, it is an deca-4,6-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Deca-4,6-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Deca-4,6-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Deca-4,8-dienedioylcarnitine
Deca-4,8-dienedioylcarnitine is an acylcarnitine. More specifically, it is an deca-4,8-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Deca-4,8-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Deca-4,8-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Deca-3,7-dienedioylcarnitine
Deca-3,7-dienedioylcarnitine is an acylcarnitine. More specifically, it is an deca-3,7-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Deca-3,7-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Deca-3,7-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
1H-Purine-2,6-dione, 7-(2-(ethylamino)ethyl)-3,7-dihydro-1,3-dimethyl-8-(phenylmethyl)-
Fenethylline
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
Naloxazone
Acetyllycopsamine
Acetyllycopsamine is soluble (in water) and a very weakly acidic compound (based on its pKa). Acetyllycopsamine can be found in borage, which makes acetyllycopsamine a potential biomarker for the consumption of this food product.
FENETHYLLINE
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
4-ethyl-10,14-dihydroxy-5-(1-hydroxyethyl)-11-methoxy-12-oxa-4-aza-tricyclo[9.2.1.02,5]tetradec-1-en-3-one|phyllostictine C
naphthalen-2-yl(1-(pentan-2-yl)-1H-indol-3-yl)methanone
Acetyllycopsamine
Acetyllycopsamine is a member of pyrrolizines. 7-Acetyllycopsamine is a natural product found in Echium horridum, Amsinckia menziesii, and other organisms with data available. See also: Comfrey Leaf (part of).
Acetylintermedine
Acetylintermedine is a member of pyrrolizines. Acetylintermedine is a natural product found in Echium pininana, Oreocarya flava, and other organisms with data available.
N1-(2-Methoxy-4-methylbenzyl)-n2-(2-(5-methylpyridin-2-yl)ethyl)oxalamide
diethyl 2-(1-(tert-butoxycarbonyl)piperidin-4-ylidene)Malonate
N-(2-aminoethyl)ethane-1,2-diamine,2-(chloromethyl)oxirane,hexanedioic acid
1-(2,3-Dihydro-1-benzothiophen-5-yl)-2-(4-phenylbutylamino)propan-1-ol
5-[3-(Dimethylamino)propylamino]-3,10-dimethylpyrimido[4,5-b]quinoline-2,4-dione
9-Butyl-8-(2,5-dimethoxy-benzyl)-9H-purin-6-ylamine
4-Acetyl-4-guanidino-6-methyl(propyl)carboxamide-4,5-dihydro-2H-pyran-2-carboxylic acid
3-Hydroxyquininium
An organic cation that is the conjugate acid of 3-hydroxyquinine, formed via protonation of the tertiary amino group; major species at pH 7.3.
(7Z)-7-hydrazinylidene-3-prop-2-enyl-2,4,5,6,7a,13-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-4a,9-diol
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
3-(4-ethoxyphenyl)-N-[(1-methyl-4-piperidinylidene)amino]-1H-pyrazole-5-carboxamide
2-methoxy-6-((E)-{[4-(2-methoxyphenyl)-1-piperazinyl]imino}methyl)phenol
1-[(1S,2aR,8bR)-1-(hydroxymethyl)-2-(4-oxazolylmethyl)-1,2a,3,8b-tetrahydroazeto[2,3-c]quinolin-4-yl]-1-butanone
1-[(1R,2aS,8bS)-1-(hydroxymethyl)-2-(4-oxazolylmethyl)-1,2a,3,8b-tetrahydroazeto[2,3-c]quinolin-4-yl]-1-butanone
6-tert-butyl-N-[(E)-(1-methylpyrrol-2-yl)methylideneamino]-2,3-dihydro-1,4-benzodioxine-3-carboxamide
(1e,5r,10s,11s,14s)-4-ethyl-10,14-dihydroxy-5-[(1s)-1-hydroxyethyl]-11-methoxy-12-oxa-4-azatricyclo[9.2.1.0²,⁵]tetradec-1-en-3-one
6-hydroxy-7-(2-methylpropyl)-4-(2-methylpropylidene)-15-oxa-2,5,8-triazatricyclo[8.5.0.0³,⁸]pentadeca-1(10),2,5,11,13-pentaen-9-one
[(7r)-7-(acetyloxy)-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl]methyl 2-hydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate
(7-hydroxy-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl)methyl 3-(acetyloxy)-2-hydroxy-2-isopropylbutanoate
(1s,4s,7s,9r)-6,9-dihydroxy-4-methyl-1-(2-methylbut-3-en-2-yl)-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-5,10,12,14-tetraen-3-one
(2s,3r,4s,5s)-3,6-diamino-4-{[(2r,5s)-5-amino-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexane-1,2,5-triol
[(7s,7ar)-7-(acetyloxy)-5,6,7,7a-tetrahydro-3h-pyrrolizin-1-yl]methyl (2s)-2-hydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate
(4z,7s)-6-hydroxy-7-(2-methylpropyl)-4-(2-methylpropylidene)-15-oxa-2,5,8-triazatricyclo[8.5.0.0³,⁸]pentadeca-1(10),2,5,11,13-pentaen-9-one
3'-acetylechinatine
{"Ingredient_id": "HBIN007876","Ingredient_name": "3'-acetylechinatine","Alias": "NA","Ingredient_formula": "C17H27NO6","Ingredient_Smile": "CC(C)C(C(C)OC(=O)C)(C(=O)OCC1=CCN2C1C(CC2)O)O","Ingredient_weight": "341.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "37200","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101924036","DrugBank_id": "NA"}
3'-acetylrinderine
{"Ingredient_id": "HBIN007882","Ingredient_name": "3'-acetylrinderine","Alias": "NA","Ingredient_formula": "C17H27NO6","Ingredient_Smile": "CC(C)C(C(C)OC(=O)C)(C(=O)OCC1=CCN2C1C(CC2)O)O","Ingredient_weight": "341.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "37198","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101993113","DrugBank_id": "NA"}
7-Acetyllycops-amine
{"Ingredient_id": "HBIN013023","Ingredient_name": "7-Acetyllycops-amine","Alias": "NA","Ingredient_formula": "C17H27NO6","Ingredient_Smile": "CC(C)C(C(C)O)(C(=O)OCC1=CCN2C1C(CC2)OC(=O)C)O","Ingredient_weight": "341.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "37733","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "91747347","DrugBank_id": "NA"}
acetylindicine
{"Ingredient_id": "HBIN014477","Ingredient_name": "acetylindicine","Alias": "NA","Ingredient_formula": "C17H27NO6","Ingredient_Smile": "CC(C)C(C(C)OC(=O)C)(C(=O)OCC1=CCN2C1C(CC2)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "437","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}