Exact Mass: 301.1889

Exact Mass Matches: 301.1889

Found 43 metabolites which its exact mass value is equals to given mass value 301.1889, within given mass tolerance error 4.0E-5 dalton. Try search metabolite list with more accurate mass tolerance error 8.0E-6 dalton.

3-Hydroxy-cis-5-octenoylcarnitine

3-{[(5Z)-3-hydroxyoct-5-enoyl]oxy}-4-(trimethylammonio)butanoic acid

C15H27NO5 (301.1889)


3-Hydroxy-cis-5-octenoylcarnitine is an acylcarnitine. More specifically, it is an 3-Hydroxy-cis-5-octenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxy-cis-5-octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-Hydroxy-cis-5-octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxy-5-octenoylcarnitine

3-[(2-hydroxyoct-5-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO5 (301.1889)


2-Hydroxy-5-octenoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyoct-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxy-5-octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxy-5-octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

4-Hydroxy-6-octenoylcarnitine

3-[(4-hydroxyoct-6-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO5 (301.1889)


4-Hydroxy-6-octenoylcarnitine is an acylcarnitine. More specifically, it is an 4-hydroxyoct-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Hydroxy-6-octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-Hydroxy-6-octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Hydroxy-6-octenoylcarnitine

3-[(3-hydroxyoct-6-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO5 (301.1889)


3-Hydroxy-6-octenoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxyoct-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxy-6-octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-Hydroxy-6-octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxy-4-octenoylcarnitine

3-[(2-hydroxyoct-4-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO5 (301.1889)


2-Hydroxy-4-octenoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyoct-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxy-4-octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxy-4-octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Oxooctanoylcarnitine

3-[(5-oxooctanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO5 (301.1889)


5-oxooctanoylcarnitine is an acylcarnitine. More specifically, it is an 5-oxooctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-oxooctanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-oxooctanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-Oxooctanoylcarnitine

3-[(7-oxooctanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO5 (301.1889)


7-oxooctanoylcarnitine is an acylcarnitine. More specifically, it is an 7-oxooctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-oxooctanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 7-oxooctanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

6-Oxooctanoylcarnitine

3-[(6-Oxooctanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C15H27NO5 (301.1889)


6-oxooctanoylcarnitine is an acylcarnitine. More specifically, it is an 6-oxooctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-oxooctanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 6-oxooctanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

4-Oxooctanoylcarnitine

3-[(4-oxooctanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO5 (301.1889)


4-oxooctanoylcarnitine is an acylcarnitine. More specifically, it is an 4-oxooctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-oxooctanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-oxooctanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Oxooctanoylcarnitine

3-[(3-oxooctanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H27NO5 (301.1889)


3-oxooctanoylcarnitine is an acylcarnitine. More specifically, it is an 3-oxooctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-oxooctanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-oxooctanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(-)-Floridinine

(-)-Floridinine

C15H27NO5 (301.1889)


   

Trachelanthine

Trachelanthine

C15H27NO5 (301.1889)


Annotation level-1

   
   

HELIOCURASSAVICINE N-OXYDE

NCGC00160190-01!HELIOCURASSAVICINE N-OXYDE

C15H27NO5 (301.1889)


   

Trachelanthamine oxide

Trachelanthamine oxide

C15H27NO5 (301.1889)


Origin: Plant; Formula(Parent): C15H27NO5; Bottle Name:Trachelanthine; PRIME Parent Name:Trachelanthine; PRIME in-house No.:V0316; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids

   

CAR 8:1;O

(Z)-3-hydroxy-5-octenoylcarnitine;3-{[(5Z)-3-hydroxyoct-5-enoyl]oxy}-4-(trimethylammonio)butanoate

C15H27NO5 (301.1889)


   

TERT-BUTYL 2-((TERT-BUTOXYCARBONYL)AMINO)-4-(OXIRAN-2-YL)BUTANOATE

TERT-BUTYL 2-((TERT-BUTOXYCARBONYL)AMINO)-4-(OXIRAN-2-YL)BUTANOATE

C15H27NO5 (301.1889)


   

1,4-Piperidinedicarboxylic acid, 4-(2-hydroxyethyl)-, 1-(1,1-dimethylethyl) 4-ethyl ester

1,4-Piperidinedicarboxylic acid, 4-(2-hydroxyethyl)-, 1-(1,1-dimethylethyl) 4-ethyl ester

C15H27NO5 (301.1889)


   

1-[(1,1-DIMETHYLETHOXY)CARBONYL]-4-HYDROXY-4-PIPERIDINEPROPANOIC ACID ETHYL ESTER

1-[(1,1-DIMETHYLETHOXY)CARBONYL]-4-HYDROXY-4-PIPERIDINEPROPANOIC ACID ETHYL ESTER

C15H27NO5 (301.1889)


   

(4-oxido-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-4-ium-1-yl)methyl 2-hydroxy-2-(1-hydroxyethyl)-3-methylbutanoate

(4-oxido-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-4-ium-1-yl)methyl 2-hydroxy-2-(1-hydroxyethyl)-3-methylbutanoate

C15H27NO5 (301.1889)


   

5-Oxooctanoylcarnitine

5-Oxooctanoylcarnitine

C15H27NO5 (301.1889)


   

7-Oxooctanoylcarnitine

7-Oxooctanoylcarnitine

C15H27NO5 (301.1889)


   

6-Oxooctanoylcarnitine

6-Oxooctanoylcarnitine

C15H27NO5 (301.1889)


   

4-Oxooctanoylcarnitine

4-Oxooctanoylcarnitine

C15H27NO5 (301.1889)


   

3-Oxooctanoylcarnitine

3-Oxooctanoylcarnitine

C15H27NO5 (301.1889)


   

2-Hydroxy-5-octenoylcarnitine

2-Hydroxy-5-octenoylcarnitine

C15H27NO5 (301.1889)


   

4-Hydroxy-6-octenoylcarnitine

4-Hydroxy-6-octenoylcarnitine

C15H27NO5 (301.1889)


   

3-Hydroxy-6-octenoylcarnitine

3-Hydroxy-6-octenoylcarnitine

C15H27NO5 (301.1889)


   

2-Hydroxy-4-octenoylcarnitine

2-Hydroxy-4-octenoylcarnitine

C15H27NO5 (301.1889)


   

[(1R)-4-Oxido-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-4-ium-1-yl]methyl 2-hydroxy-2-(1-hydroxyethyl)-3-methylbutanoate

[(1R)-4-Oxido-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-4-ium-1-yl]methyl 2-hydroxy-2-(1-hydroxyethyl)-3-methylbutanoate

C15H27NO5 (301.1889)


   

3-hydroxy-cis-5-octenoylcarnitine

3-hydroxy-cis-5-octenoylcarnitine

C15H27NO5 (301.1889)


An O-acylcarnitine having 3-hydroxy-cis-5-octenoyl as the acyl substituent.

   
   
   
   
   

hexahydro-1h-pyrrolizin-1-ylmethyl (2s)-2,3-dihydroxy-2-(1-hydroxyethyl)-3-methylbutanoate

hexahydro-1h-pyrrolizin-1-ylmethyl (2s)-2,3-dihydroxy-2-(1-hydroxyethyl)-3-methylbutanoate

C15H27NO5 (301.1889)


   

(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl (2s)-2,3-dihydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate

(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl (2s)-2,3-dihydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate

C15H27NO5 (301.1889)


   

(7-hydroxy-hexahydro-1h-pyrrolizin-1-yl)methyl 2,3-dihydroxy-2-isopropylbutanoate

(7-hydroxy-hexahydro-1h-pyrrolizin-1-yl)methyl 2,3-dihydroxy-2-isopropylbutanoate

C15H27NO5 (301.1889)


   

[(1s,7r,7ar)-7-hydroxy-hexahydro-1h-pyrrolizin-1-yl]methyl (2s)-2-hydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate

[(1s,7r,7ar)-7-hydroxy-hexahydro-1h-pyrrolizin-1-yl]methyl (2s)-2-hydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate

C15H27NO5 (301.1889)


   

(1r,7as)-1-({[(2s)-2-hydroxy-2-[(1r)-1-hydroxyethyl]-3-methylbutanoyl]oxy}methyl)-hexahydro-1h-pyrrolizin-4-ium-4-olate

(1r,7as)-1-({[(2s)-2-hydroxy-2-[(1r)-1-hydroxyethyl]-3-methylbutanoyl]oxy}methyl)-hexahydro-1h-pyrrolizin-4-ium-4-olate

C15H27NO5 (301.1889)


   

(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl (2r)-2,3-dihydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate

(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl (2r)-2,3-dihydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoate

C15H27NO5 (301.1889)


   

(1s,7as)-1-({[(2r)-2,3-dihydroxy-2-isopropylbutanoyl]oxy}methyl)-hexahydro-1h-pyrrolizin-4-ium-4-olate

(1s,7as)-1-({[(2r)-2,3-dihydroxy-2-isopropylbutanoyl]oxy}methyl)-hexahydro-1h-pyrrolizin-4-ium-4-olate

C15H27NO5 (301.1889)


   

hexahydro-1h-pyrrolizin-1-ylmethyl 2,3-dihydroxy-2-(1-hydroxyethyl)-3-methylbutanoate

hexahydro-1h-pyrrolizin-1-ylmethyl 2,3-dihydroxy-2-(1-hydroxyethyl)-3-methylbutanoate

C15H27NO5 (301.1889)